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Mechanical Tests and Polymer Transitions

1. INTRODUCTION

Most plastic materials are used because they have desirable mechanical
properties at an economical cost. For this reason, the mechanical properties
may be considered the most important of all the physical and chemical
properties of high polymers for most applications. Thus everyone working
with such materials needs at least an elementary knowledge of their me-
chanical behavior and how this behavior can be modified by the numerous
structural factors that can be varied in polymers. High polymers, a few of
which have their chemical structure shown in Appendix I, have the widest
variety and range of mechanical properties of all known materials. Poly-
mers vary from liquids and soft rubbers to very hard and rigid solids.
Unfortunately, this virtuosity is sometimes viewed instead as a baffling
complexity. One of the purposes of this book, therefore, is to show that
there is an underlying order and organization that can serve as a logical
framework and guide to this variety and to the interplay between properties
and these structural features. The interplay is important because of the
need to understand how structural modifications made to achieve some
desired property can affect other properties at the same time. There are
a great many structural factors that determine the nature of the mechanical
behavior of such materials. One of the primary aims of this book is to
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show how the following structural factors, in addition to the chemical
composition, affect all of the major mechanical properties of polymers:

Molecular weight

Cross-linking and branching

Crystallinity and crystal morphology
Copolymerization (random, block, and .graft)
Plasticization

Molecular orientation

Fillers

Blending

, Phase separation and orientation in blocks, grafts, and blends

© PN U AW

In addition to the structural and molecular factors listed above, the
following environmental or external variables are important in determining
mechanical behavior:

. Temperature
Time, frequency, rate of stressing or straining
Pressure
Stress and strain amplitude
Type of deformation (shear, tensile, biaxial, etc.)
Meat treatments or thermal history
Nature of surrounding atmosphere, especially moisture content

INIE-NRVRF NI NN

There is a strong dependence on temperature and time of the properties
of polymers compared to those of other materials such as metals. This
strong dependence of properties on temperature and on how fast the ma
terial is deformed (time scale) is a result of the viscoelastic nature Of
polymers. Viscoelasticity implies behavior similar to both viscous liquids
in which the rate of deformation is proportional to the applied force and
to purely elastic solids in which the deformation is proportional to the
applied force In viscous systems ;all the work done on The system is dis-
sipated as heat, whereas in elastic systems all the work is stored as potential
energy, as in a stretched spring. It is this dual nature of polymers that
makes their behavior so complex and at the same time so interesting. The
great variety of mechanical tests and the numerous factors listed above
would make study of the mechanical properties of polymers very complex
if it were not for some general phenomena and principles that underlie all
of these various properties and determine the outcome of various test or
use conditions. These principles organize and systematize the study, under-
standing, and prediction or estimation of this complex array of properties,
including interdependences. They do this with just a very few equations
(or functions) and mater ill characteristic parameters.
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[l. MECHANICAL TESTS

There are a bewildering number of mechanical tests and testing instru-
ments. Most of these tests are very specialized and have not been officially
recognized as standardized tests. Some of these tests, however, have been
standardized and are described in the publications of the American Society
for Testing and Materials (1). Many of the important tests for plastics are
given as ASTM standards in a series of volumes. The important volumes
(parts) covering polymeric materials are listed in Table 1. Although many
tests have been standardized, it must be recognized that a standardized
test may be no better than one that is not considered a standard. One
objective of a standardized test is to bring about simplicity and uniformity
to testing, and such tests are not necessarily the best tor generating the
most basic information or the special type of information required by a
research problem. The tests may not even correlate with practical use tests
in some cases.

Besides the ASTM standard tests, a number of general reference books
have been published on testing and on the mechanical properties of poly-
mers and viscoelastic materials (2-7). Unfortunately, a great variety of
units are used in reporting values of mechanical tests. Stresses, moduli of
elasticity, and other properties are given in such units as MK.S (SI), cgs,
and English units. A table of conversion factors is given in Appendix II.

A. Creep Tests

Creep tests give extremely important practical information and at the same
time give useful data on those interested in the theory of the mechanical
properties of materials. As illustrated in Figure 1, in creep tests one mea-

Table 1  ASTM Standards

Part No. Materials covered
15 Paper, packaging
16 Structural sandwich constructions, wood, adhesives
20 Paint: Materials specifications and tests
21 Paint: Tests for formulated materials and applied coatings
24 Textiles: Yarns and fabrics
25 Textiles: Fibers
26 Plastics: Specifications
27 Plastics: Methods of testing
28 Rubbers

29 Electrical insulating materials
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Figure 1 Schematic diagrams of various types of tensile tests F, force; e strain or
elongation.

sures over a period of time the deformation brought about by a constant
load or force, or for a true measure of the response, a constant stress.
Creep tests measure the change in length of a specimen by a constant
tensile force or stress, but creep tests in shear, torsion, or compression are
also made. If the material is very stiff and brittle, creep tests often are
made in flexure but in such cases the stress is not constant throughout the
thickness of the .specimen even though the applied load is constant. Figure
2 illustrates the various types of creep tests In a creep test the deformation
increase with lime. If the strain is divided by the applied stress, one obtains a
quantity known as the compliance. The compliance is a time-dependent
reciprocal modulus, and it will be denoted by the symbol J for shear com-
pliance and D for tensile compliance (8).
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Figure 2 Types of creep tests,

If the load is removed from a creep .specimen after some lime, there is a
tendency for the specimen to return to its original length or shape. A
recovery curve is. thus obtained if the deformation is plotted as a function
of time after removal of the load,

B. Stress-Relaxation Tests

fa stress-relaxation tests, the specimen is quickly deformed a given amount,
and the stress required to hold the deformation constant is measured as a
function of time. Such a test is shown schematically in Figure 1. If the
stress is divided by the constant strain, a modulus that decreases with time
is obtained. Stress-relaxation experiments are very important for a theo-
retical understanding of viscoelastic materials. With experimentalists, how-
ever, such tests have not been as popular as creep tests. There are probably
at least two reasons for this: (1) Stress-relaxation experiments, especially
on rigid materials, are more difficult to make than creep tests; and (2)
creep costs are generally more useful to engineers and designers.
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C. Stress-Strain Tests

Jn stress-strain tests the buildup of force (or stress) is measured as the
specimen is being deformed at a constant rate. This is illustrated in Figure
I. Occasionally, stress-strain tests are modified to measure the deformation
of a specimen as the force is applied at a constant rate, and such tests are
becoming commonplace with the advent of commercially available load-
controlled test machines. Stress-strain tests have traditionally been the most
popular and universally used of alt mechanical tests and are described by
ASTM standard Vests such as D638, D882, and D412. These tests can be
more difficult to interpret than many other tests because the stress can
become nonhomogeneous (i.e., it varies from region to region in the speci-
men as in cold-drawing or necking and in crazing). In addition, several
different processes can come into play (e.g., spherulite and/or lamella
breakup in crystalline polymers in addition to amorphous chain segment
reorientation). Also, since a polymer's properties arc time dependent, the
shape of the observed curve will depend on the strain rate and temperature.
Figure 3 illustrates the great variation in stress-strain behavior of polymers
as measured at a constant rate of strain. The scales on these graphs

10,000
0
i o
ra w__
y = WF
& BRITTLE C217 oeriLe
ol g " § .
) 0 ) 00
STRAIN (%) STRAIN {%)
B
2,000
n
mﬂ
&8
o 2
w ELASTOMERIC
L4
c STRAIN (%)

Figure 3  General types of stress-strain curves.
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are not exact but arc intended to give an order-of-magnitude indication of
the values encountered. The first graph (A) is for hard, brittle materials-
The second graph (B) is typical of hard, ductile polymers. The top curve
in the ductile polymer graph is for a material that shows uniform extension.
The lower curve in this graph has a yield point and is typical of a material
that cold-draws with necking down of the cross section in a limited area
of the specimen. Curves of the third graph (C) arc typical of elastomeric
materials.

Figure 4 helps illustrate the terminology used for stress-strain testing.
The slope of the initial straight-line portion of the curve is the elastic
modulus of the material, In a tensile test this modulus is Young's modulus,

B e B (1)

The maximum in the curve denotes the stress at yield a, and the elongation
at yield €,. The end of the curve denotes the failure of the material, which
is characterized by the tensile strength a and the ultimate strain or elon
gation to break . These values are determined from a stress-strain curve
while the actual experimental values are generally reported as load-
deformation curves. Thus (he experimental curves require a
transformation of scales to obtain the desired stress-strain curves. This is
accomplished by the following definitions. For tensile tests:

stress ¢ = — *t?jicg—ﬁ“-—lq“—lq—ﬁ—-- - (2)

cross-sectional area A

If the cross-sectional area is that of the original undeformed specimen, this
is the engineering stress. If the area is continuously monitored or known

STRESS

0 €y STRAIN €y

Figure 4 Stress-strain notation.
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during the test, this is the true stress For large strains (i.e. Figure3.B and C)
there is a significant difference.

The strain EC can be defined in several ways, as given in Table 2, but for
engineering (and most theoretical) purposes, the strain for rigid materials
is defined as

L - Ly AL°®
- T &)
Ly Ly
The original length 6f the specimen Is LO and its stretched length is L. At
very small deformations, all the strain definitions of Table 2 are equivalent,
For shear tests (see Figure 2)

shear force F
area of shear face A

shear stress o, =

(4)

h , amount of shear displacement §
shear strain y = —— —— _
MY = Gistance between shearing surfaces D

=ftanh (5)

for shear of arod the strains are not uniform,, but for small angular
displacements .under a torque AT, the maximum stress and Strain occur

Table 2 Definitions of Tensile Strain

Definition . Name
L= by AL S
e b Cauchy (engineering)
Lo~ by
RTR
L
] l —_
€« = In ™
.-—'-i--(f’-")? Kinetic theory of rubberlik
31 L 1netic theory ot rubberlike
€ : (L ’ -1 elasticit
2 | WL Y

r ?
| - (!!") ] Kirchhoff

(T) . [) Murnaghan

-~
—— Td |

seth (nis Variable)
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at the surface and are given by

pidd|

shear stress (maximum) = 55
g
shear strain (maximum) = 7~
if Hooke's law holds, the elastic moduli are defined by the
equations
o= Ee (tensile tests) (6)
a, = Oy (shear tests) (7)

where E is the Young's modulus and G is the shear modulus.

Tensile stress-strain tests give another elastic constant, called Poisson's
ratio, v. Poisson's ratio is defined for very small elongations as the decrease
in width of the specimen per unit initial width divided by the increase in.
length per unit initial length on the application of a tensile load::

L ey =dlner
A TR TP (8)

In this equation e is the longitudinal strain and e, is the strain in the width
(transverse) direction or the direction perpendicular to the applied force.
It can be shown that when Poisson's ratio is 0.50, the volume of the speci-
men remains constant while being stretched. This condition of constant
volume holds for liquids and ideal rubbers. In general, there is an increase
in volume, which is given by

av .
Vo
where AV is the increase in the initial volume V. brought about by straining

the specimen. Note that v is therefore not strictly a constant. For strains
beyond infinitesimal, a more appropriate definition is (9)

(1 —~ 2v)e (9)

by _ inll ¥ e
In A In(i + ¢ e

Moreover, for deformations other than simple tension the apparent Pojs-
son's ratio -t,/€ is a function of the type of deformation.

Poison's ratio is used by engineer's in place of the more fundamental quality desired, the bulk
modulus. The latter is in fact determined by r for linearly elastic systems—h«ncc the widespread use
of v engineering equation for large deformations, however, where the Strain is not proportional to
the stress, a single value of the hulk modulus may still suffice even when the value of y is
not- constant,
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D, Dynamic Mechanical Tests

A fourth type of test is known as a dynamic mechanical test. Dynamic
mechanical tests measure the response of a material to a sinusoidal or other
periodic stress. Since the stress and strain are generally not in phase, two
quantities can be determined: a modulus and a phase angle or a damping
term. There arc many types of dynamic mechanical test instruments. One
type is illustrated schematically in Figure I. The general type of dynamic
mechanical instruments are free vibration, resonance forced vibration, non-
resonance forced vibration, and wave or pulse propagation instruments
(3.4). Although any one instrument has a limited frequency range, the
different types of apparatus arc capable of covering the range from a small .
fraction of a cycle per second up to millions of cycles per second. Most
instruments measure either shear or tensile properties, but instruments
have been built to measure bulk properties.

Dynamic mechanical tests, in general, give more information about a
material than other tests, although theoretically the other types of me-
chanical tests can give the same information. Dynamic tests over a wide
temperature and frequency range are especially sensitive to the chemical
and physical structure, of plastics. Such tests are in many cases the most
sensitive tests known for studying glass transitions and secondary transitions
in polymers as well as the morphology of crystalline polymers.

Dynamic mechanical results are generally given in terms of complex
moduli or compliances (3,4), The notation will be illustrated in terms Of
shear modulus G, but exactly analogous notation holds for Young's mod-
ulus F. The complex moduli are defined by

G* = G+ iG" (1)

where G* is the complex shear modulus, G’ the real part of the modulus,
G" the imaginary part of the modulus, and i = V- I. G' is called the
storage modulus and G the loss modulus. The latter is a damping or
energy dissipation term. The angle that reflects the time lag between the
applied stress and strain is landa, and it is defined by a ratio called the
loss tangent or dissipation factor:

=it

{5
H = 2
tan & Z (12)

r

Tan landa, a damping term, is a measure of the ratio of energy dissipated
as heat to the maximum energy stored in the material during one cycle of
oscillation. For small to medium amounts of damping. G' is the same as
the shear modulus measured by other methods at comparable time scales.
The loss modulus G" is directly proportional to the heat H dissipated per
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i = n(i"yi ) (13)
*=J - (14}
W= - (13)

Some of the interrelationships between the complex quantities are

G =y oand GF = owy’ (16}

S (s
(' = 7 and JT e P (17)
i g ¢’
- = 18)
i HR)
where
(12 = ¢/ + 0 dnd 2 o= BT g™ (19

where gama(0) is the maximum value of the shear strain during a cycle.
Other dynamic mechanical terms expressed by complex notation include the
com-. plex compliance /* and the complex viscosity eta.
and w is the frequency of the oscillations in radians per second. Note that
the real part of the complex viscosity is an energy-dissipation term, just as
is.the imaginary part of the complex modulus.

Damping is often expressed in terms of quantities conveniently obtained
with the type of instrument used. Since there are so many kinds of instru-
ments, there are many damping terms in common use, such as the loga-
rithmic decrement A, the half-width of a resonance peak, the half-power
width of a resonance peak, the Q factor, specific damping capacity i|<, the
resilience R, and decibels of damping dB.

The logarithmic decrement A is a convenient damping term for free-
vibration instruments such as the torsion pendulum illustrated in Figure 5
for measuring shear modulus and damping. Here the weight of the upper
sample champ and the inertia bar are supported by a compliant torsion wire
suspension or a magnetic suspension (10) to prevent creep of the specimen
if it had to support them. As shown in the bottom of this figure, the
successive amplitudes A, decrease because of the gradual dissipation of the
clastic energy into heat. The logarithmic decrement is defined by

.c4| /1-. I _:'1
113 B v Uy sl 20
fl_. n il { }

A = In d
A n v
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SPECIMEN

AMPLITUDE

Figure 5 Schematic diagram of a torsion pendulum and a typical damped oscil-
lation curve. |Modified from L. E. Nielsen,
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It is related to the dissipation factor approximately by
& 5 (21)
@
This equation is maccurate at low damping (A < 1), but the error becomes
large at high damping. More exact equations have been discussed by Struik
(I1) and Nielsen (4). The standard ASTM test is D2236-69.

Damping may be obtained from forced resonance vibration instruments
from plots of amplitude of vibration versus frequency through the reso-
nance peak. Figure 6 illustrates such a plot of a resonance peak. Using the
notation shown in this figure, the damping may be expressed, as

=8 . \/3 E"
et 2 A3 — (22)
Jr E
] VIBRATING SYSTEM
< -{ '-'.'LT_--:a
CLAMP
SPECIMEN
(EDGE VIEW)
AMPLITUDE
H)Dr
i .
* 1707

|
r

!

J

F

|

1

|

|

i

-u's-—-_._—__.._‘_

L 1}

A
=)

o

Q —_—
II V

:'
-1-,_—_____..-.___ ]

[
FREQUENCY

Figure 6 Typical amplitude-frequency curve obtained with a vibrating reed ap-
paraius. [From L. E. Nielsen,
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form the half-height width or

form the root mean square (rms) height peat, width. The damping is
expressed in this caseby E."/E' rather than as G”/G ' since in the case illustrated.
Young's modulus is determined instead of the shear monlulus.. Other common
damping terms may be expressed in terms of the dis-sipation factor in the
following parameters and equations:

reciprocal O

loss dB

sometimes it is desirable to be able to estimate damping values in shear form
measurements made in tension, or vice versa, As a first approximation,
very appropriate to rubbery. incompressible materials.

B

et = 'y

O %)
More exact equations. such as

! = (; L0 l TR AN 29)

i GUTod (GO v (GG

show that G''/G ' is equal to or slightly greater than E"/E". (12,13). in equa
tion (29). K is the bulk modulus.
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There are many other type's of mechanical tests in common use. One of
the most import tant of these tests is the impact strength of materials. Impact
tests measure resistance to breakage under specified conditions when the
lest specimen is struck at high velocity- Such tests are some measurement
of the toughness of the polymer. They are very important practical tests,
especially where an experience base has been built up over time, However,
as usually done, they are difficult to define and analyze in scientific terms,
and hence it has been difficult to employ the results directly in designs.
However, instrumental impact testers are mow commercially available to-
gether with greatly improved analysis techniques (14). and the situation is
improving rapidly. The three most widely used impact testers are the falling
ball or dart testers (4..5.15). Izod tester { 16.18), and charpy tester (16), high-
speed tensile stress-strain testers (19.20) may also be considered as impact
or toughness testers.

For a quantitative measure of toughness, which can be used to relate the
apparent toughness values observed in the different practical tests or incon-
ducting a stress analysis of functional parts, the fracture toughness lest is used
(14,21 -23). fracture toughness is a measure of the ability of a material to
resist extension of a pre-existing crack, despite the stress concentration that
is built up there. In these tests, the ends of a precracked specimen are pulled
apart in a direction perpendicular to the plane of the crack (called a mode |
test), or parallel but transverse to the plane of the crack (mode Il). In a third
mode, the plane of the crack is sheared by a sliding motion in the direction
of the crack. ASTM E399-83 gives sample dimensions and procedures.

In contrast to the impact tests, these can be analysed; toughness is
reported as the critical energy release rate (7, or the stress concentration
factor K Values may tange from 5000 J.'nr' for a tough nylon or poly-
carbonate down to 350 .J/m' lor buttle unmodified polystyrene. The values
can be sensitive to rale and temprature

Except for a lew thermoset materials, most plastics soften at some
temperatures, At the softening or heat distortion temperature, plastics
become easily deformahle and tend to lose their shape and deform
quickly under a Load. Above the heat distortion temperature. rigid
amorphous plastics become useless as structural materials. Thus the heat
distortion test, which defines The approximate upper temperature at which
the material can be Safely used, is an important test (4,5.7.24). As
expected, lor amorphous materials the heat distortion temperature is
closely related to the glass transition temperature, hut tor highly
crystalline polymers the heat distortion temperature is generally
considerably higher than the glass transition temperature. Fillers also often
raise the heat distortion test well above



16 Chapter 1

the glass transition temperature. Other common mechanical tests include
hardness, scratch resistance, friction, abrasion, tear, and fatigue tests (1,4.5).

.  GLASS TRANSITIONS

Most polymers are either completely amorphous or have an amorphouslike
component even if they arc crystalline. Such materials are hard, rigid glasses
below a fairly sharply defined temperature known as the glass transition
temperature Tg,. At temperatures above the glass transition temperature, at
least at slow to moderate rates of deformation, the amorphous polymer is
soft and flexible and is either an elastomer or a very viscous liquid,
Mechanical properties show profound changes in the region of the glass
transition. For example, the elastic modulus may decrease by a factor of
over 1000 times as the temperature is raised through the glass transition
region. For this reuson, 7g can be considered the most important matciial
characteristic of a polymer as far as mechanical properties are concerned.
Many other physical properties change rapidly with temperature in the
glass transition region. These properties include coefficients of thermal
expansion (25.26). heat capacity (25,27), refractive index (2S), mechanical
damping (4), nuclear magnetic (29) and electron spin resonance behavior
(30,31"). electrical properties (32-35), and tensile strength and ultimate
elongation in elastomers (36,37). In view of the great practical importance
of the glass transition temperature, a table of Tg values for many common
polymers is given in Appendix I11. An extensive compilation is given in
Ref. 38. l-Elastomeric; or rubbery materials have a Tg, or softening tem
ptrature value, below room temperature. Brittle, rigid polymers have a 7',
value above room temperature. Glass transitions vary from - 143°C for
pnly(diethyl siloxane) rubber (39) to 100°C for polystyrene and on up to
above 300°C or above the decomposition temperature for highly cross-
linked phenol -formaldehyde resins and polyclectrolytes (40,41).

In addition to its practical importance, 7, has important theoretical
implications for the understanding of the molecular origin of polymer me-
chanical behavior (3,4,6,35,42-45) and plays a central role in establishing
the framework, mentioned above, which relates the properties of different
polymers to each other (3;46.47).

The glass transition temperature is generally measured- by experiments
that correspond to a time scale of seconds or minutes. If the experiments;
are done more rapidly, so that the time scale is shortened, the apparent
Tg value is raised. If the time scale is lengthened to hours or days, the
apparent Tg value is lowered. Thus, as generally measured, Tg is not a true
constant but shifts with the time scale of the experiment or observation.
Moreover, Tg is masked by experimental difficulties, compounded by mul-
tiple and often inaccurate definitions of 7g in the literature. The least
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ambiguous and soundest one is that temperature at which the volumetric
thermal expansion coefficient undergoes a step change at heating and cool-
ing rates of 1 C/min.t Increasing the time scale by a factor of 10 will shift
the apparent Tg by roughly 3"C [volumetric measurements (3)] to 7°C
(maximum in tan landa plot) for a typical polymer.

The explicit nature of the glass transition is not clear, and many theories,
some conflicting, have been proposed (25,42-45,48-53). It represents an
interrupted approach 10 a hypothetical thermodynamic state of zero config-
unitional ent ropy and close-ordered segmental packing. This state cannot be
reached because the molecular motions that permit rearrangement to better
packing and lower entropy become exponentially slower with decreasing tem-
perature.. Finally, at some rather small temperature range, Tg, the rate of
further change exceeds the time scale of measurement. The hypothetical glass
temperature is the polymeric equivalent of 0 K. for an ideal gas and lies roughly
50 K below the volumetric Tk, Thus Tg is an operational reference temperature
for the onset of segmental rearrangements, The volume required for re-
arrangements is called the free volume, Although the theoretical nature of
the glass transition is subject to debate, the practical importance of Tg cannot
be disputed.

A. Chemical Structure and T,

Several factors related to chemical structure are known to affect the glass
transition tempera lure. The most important factor is chain stiffness or
flexibility of the polymer. Main-chain aliphatic groups, ether linkages, and
dimethylsiloxane groups build flexibility into a polymer and lower Tg
Aliphatic side chains also lower Tg, (he effect of the length of aliphatic
groups is illustrated by the methacrylate series (4,38):

Methyl ester
Ethyl n-Propyl
n-Butyl

n-Octyl

no! only sensitive u-i the Ir*cency U\L-1.[ (whu-i should always be staled) I'ui also to extraneous
features such as the degree nl rnis>-linkinp, ihc am<nini of filler present, ;ind the presence
of a sccund phase (c.y . <,ryM:iMiiiny). all ot winch cjin significiinily cliaiigc the v;ilue of (he
temperature ;il whifh lan Fi,,,,, is nhserveit. t-vfii when Die dilatomotric T, which is insensitive
to Such feature's, remain* uiifharifietl, Jicnec sineh itiediiinitjil proven)f-hiisi:d values oJ Tk
arc often nut rcJisihte,
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On the other hand, large or rigid groups such as substituted aromatic
structures ;and pendant tertiary butyl groups raise the glass transition tem-
perature. The effect of decreasing molecular flexibility by the substitution
of bulky side groups onto a polymer chain is illustrated by the polystyrenes
{Tg -1001°C).3ndpoly(2,6'dichlorosiyrenc){T;, = 167"C). However it is the
flexibility of the group, not its size, that is the factor determining Tg. Thus
increasing the size of an aliphatic group can actually lower the glass tran-
sition temperature, as illustrated in the methacrylate series above.

A second factor important in determining Tg. value is the molecular
polarity or the cohesive energy density of the polymer, Increasing the
polarity of a polymer increases its Tg.. Thus in the series polypropylene
(Tg=10 C), poly(vinyl chloride) (Tg =85 C'}. and polyacrylonitrile (
Tg=101 C)the size of the side groups is about [he same, hut the polarity
increases. The effect of cohesive energy density or the strength of inter-
molecular forces is further illustrated by the series poly(methyl acrylate)
(Tg=3 C). poly(acrylic acid) (Tg=106 C). and poly(zine acrylate)(Tg>400 C). In
this series. the strong hydrogen bonds in poly(acrylic acid) greatlv
increase the intramolecular forces over those found in the methyl ester
polymer, The intramolecular forces are increased more in the zine
compound by The even stronger ionic bonds, which have many of the
characteristics of cross-links.

A third factor influencing the value of Tg is backbone symmetry, which
affects the shape of the potential wells for bond rotations. This effect is
illustrated by the pairs of polymers polypropylene (Tg=10 C) and
polyisobutylene (Tg = -70 C), and poly(vinyi chloride) (Tg=87 C) and
poly(vinylidene chloride) (Tg =- 19°C). The symmetrical polymers have
lower glass transition temperatures than the unsymmetrical polymers de-
Spite the extra side group, although polystyrene (100 C) and poly(a-meth-
ylstyrene) are illustrative exceptions. However, tacticity plays a very
important role (54) in unsymmetrical polymers. Thus syndiotactic and
isoitactic poly( methyl methacrylate) have Tg values of 115 and 45 C
respectively.

The flexibility and cohesive energy density or polarity of each group arc
nearly independent of the other groups in the molecule to which they are
attached (55 60).because of this, each group can be assigned an apparent
Tg value, and the Tg value of a polymer becomes Che sum of the contri-
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tuitions of all the groups, that is.

T, = > T, (30)

where ni is the mole fraction of group i in the polymer.

A somewhat more complex treatment of group contributions (61) utilizes
the fact that the tola! cohesive energy density, E(coh) of the chain unit can
be determined from Fedors" table of group contributions (62); the ratio of
E(coh) to the effective number of freely rotating groups per unit, £ ai is
proportional to Tg. That is.

qi. A

ey

T, = Lo (31)
where A =0,0145Kmol 'J 'and C= 120 K.

The strong dependence of Tg on free volume, (or an equivalent factor)
is shown by a simple empirical rule and by the pressure dependence of Tg
The empirical rule is (63.64)

o, = ) F, = 113 1 oo (32)

where ai and ag arc (he volume coefficients of thermal expansion above
and below Tg, respectively, and (he term a, - ag is taken to he the
expansion coefficient of the free volume. Pressure increases Tg (3.65-69).
O'Reilly (65) found that pressure increases the Tg value of poly(vinyl
acetate) at the rate of 0.,22 K'MPa (0.22C/atm). The' Tg.. value of polyfvinyl
chloride) increases by 0.14 K/MPn (f).()14"C/atm). while the rate of increase
is 0,18 K/MPa (0.018 C/atm) lor poly(methyl methacrylate) (66). For
robbers the rate of increase is about 0.17 K/MPa (0.017 C/bar) (67), and
for polypropylene it is 0.20 K/MPa (0.020V/kg cm #2) (68). Zoeller (69)
has carried out extensive measurements of pressure effects on Tg.
Theoreti-cally. the Tg value .should increase with pressure as a function of
the ratio of the compressibility to the- thermal coefficient of expansion of
the polymer. Other thermodynamic relations concerning Tg. have been
reviewed by McKcnna (70).

Most polymers show small 'secondary glas.s transitions below the main
glass transition (3..37,71 -76). These secondary transitions can be important
in determining such properties as toughness and impact strength. These'
transitions are discussed in more detail in later chapters.

B. Structural Factors Affecting T,

The glass transition increases wilh number-average molecular weight M,,
to a limiting asymptotic value of Tg for infinite molecular weight, in the
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practical range of molecular weights, Tg is given by (50.51.77.78)

, B
= g (33)

where K is a constant characteristic of each polymer. For polystyrene
K = 1.75 x 10°, so its Tg value increases from about 83°C for a molecular
weight of 1074 to 100 C for infinite molecular weight. The change in
Tg arises from the ends of the polymer chains, which have more free
volume

than the same number of atoms in the middle of the chain. Cowie (79.)
.and Boyer (80,81) suggest that a better representation, valid over a wider
range in M, is

T, =T+ klog(M, = M, me) (34)

where k& and Mn(max) are again characteristic of each polymer and
Mn(max). defines a value above which Tg ceases to be molecular-weight
dependent.

Cross-linking increases the glass transition of a polymer by introducing:
restrictions on the molecular motions of a chain (61.82-92). Low degrees
of cross-linking, such as found in normal vulcanized rubbers, increase Tg
only slightly above that of the uncross linked polymer. However, in highly
cross-linked materials such as phenol-formaldehyde resins and epoxy res-
ins. Tg is markedly increased by cross-linking (61,84,87,89-92). Two effects
must be considered: (1) the cross-linking per se, and (2) a copolymer effect
taking into account that a cross-linking agent generally is not chemically
the same as the rest of the polymer (83). The chemical composition changes
as cross-linking increases, so the copolymer effect can either raise Or lower
the T, value.

Nielsen (88) averaged the data in the literature and arrived at the ap
proximate empirical equation

7 =39 x 10

% & M,

o (35)
The number-average molecular weight between cross-linked points is M,
while Tg, is the glass transition temperature of the uncross-linked polymer
having the same chemical composition as the cross-linked polymer; that
is, Tg - T, is the shift in Tg due only to cross-linking after correcting fot any
copolymer effect of the cross-linking agent. Kreibich and Bauer (61) have
amended and extended this expression and shown that the constant can
be related to E(coh) |cf. equation (31)].

DiMarzjo (93), Nielsen (88), DiBenedetto (94), and others (89) have
derived theoretical equations relating the shift in Tg en used by cross-linking*
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DiBenedetto's equation is
Vo= Ty . KX | 3K

3

y 1- X, n

ri

(36)

The mole fraction of the monomer units that are cross-linked in the polymer
is X,., and n, is The number-average number of atoms in the polymer
backbone between cross-links. The temperature should be expressed in
absolute degrees in this equation. The constant K is predicted to be between
1.0 and 1.2; it is a function of the ratio of segmental mobilities of cross-
linked to uncross-linked polymer units and the relative cohesive energy
densities of cross-linked and uncross-linked polymer (88). The theoretical
equation is probably fairly good, but accurate tests of it are difficult because
of the uncertainty in making the correction for the copolymer effect and
because of errors in determining ny

The degree of cross-linking has been expressed by many different quan-
tities. For vinyl-type polymers, where there arc two backbone atoms per
monomer unit.

ol i B g By
|

- X, n M',h

where M0, is the molecular weight of the monomer.

Plasticixers arc low-molecular-weight liquids that lower the glass tran-
sition temperature of a polymer. A typical example is the use of dioctyl
phthalate in poly(vinyl chloride) to convert the polymer from a rigid ma-
terial to a soft, flexible one. It the glass transition of the two components
A and B are known, an estimate can be made of the Tg value of the
mixture by one or the other of the equations

(37)

T;; = ?Iwé’ a T;{n'bu (38)
1 W, W,

Bt 1 s e e 39
I,q ?Kd ‘!Ui ( )

The glass transition of the polymer Is Tg. while that of the plasticizer is
T4\ the volume fraction of plasticizer is Fi(b), and its weight fraction js Wg.
Typical values of 7" are betvaen -50 and - 100°O. To calculate more
accurate values of Tg additional information must be available, such as
the Tg value of a known mixture or the coefficients of thermal expansion
(ay and a,,) of" the pure components in both their liquid and glassy states
(51,95). For each Component i

LT T (40))

where «,, is the volume coefficient of expansion above T and ag; is the
coefficient below T'g for many polymers| a, = 4.8 x 10 * K*-1. The Tg
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value of plnsticized polymers is then given by (51.96)'
rgl 'f. tK f.l:‘” ! III‘.‘,| }i,t.‘ n

" < J)
" I + (KN |y e

where A" is either an empirical constant of

K = =t (42)
o
Equation (4 1) becomes equation (38) if K = 1. and it is often close to
.equation (39) it" K = 2.
An equation that usually fits experimental data belter than equations
(38) or {39) is the general mixture rule for two-component mixtures.- m
which there is a single phase; that is. the components are miscible (97)

r T, AR Y (905, L L . (i)

i
where / is an interaction term and Xi and Xb are the mole fractions of
polymer and plasticizer, Theinter action term isusually positive it there is strong
interaction of the plasticizer with the monomoric units of the polymer.if the
packing of the plasticizer and polymer is poor,] may be negative. and the
concentration variable probably should be volume fraction instead of' mole
traction, "This equation also has been used with the weight fraction as The
concentration variable (98.99). The interaction constant has bean used
mosily as an empirical constant determined From experimental. but
some attempts have been made to estimate it theortically show ( 100) has
developed a complex theory thai predicts a universal curve for Tg/Tga as a
function of plasticizer concentration.

the glass transition temperatures of copolymers are very analogous to these of
plasticized materials if the. comonomer B is considered to be a plasticizer for
homopolymer A4- Equations (_38). (39). (41). and(43) are still applicable
except that k is generally assumed to be empirical constant (51.96.101.102).
Equation (43) has been used many limes for the Tg value of copolymers.
(97.103.104), In copolymers. the distribution of 4 4. BB and 4B sequences
is important in determining Tg (103.105.109). Random copoly mers
generally do not have the same Tg values as copolymers of the same overall
composition bnt with the maximum possible number of AB sequencers,

There is considerable confusion as to how the class, transition is affected
by molecular orientation, In some experiments orientation lowers the ap-
parent Tg, value in the direction parallel to the orientation (110.113), The
Tg value in the direction perpendicular to the orientation, on the other hand,
may be increased (1 11). Others find that orientation increases lhe Tg,
value (114.115). Still others find no change in Tg value with stretching
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of rubbers (116). These Tg values were determined by varying experimental
methods, so (hey are not always comparable. In any event, the. effect is
small.

IV. CRYSTALLINITY

Many polymers are not completely amorphous but are more or less crys-
talline. The degree of Crystallinity and the morphology of the crystalline
material have profound effects on the mechanical behavior of polymers,
and since these factors can be varied over a wide range, the mechani-
cal properties of crystalline polymers take on a bewildering array of
possibilities.

The nature of the mechanical property changes is discussed in subse-
quent chapters. The degree of crystallinity is generally measured by x-ray
diffraction techniques- (117.119) or by measuring density (117,120,121),
but some' mechanical tests are- the most sensitive indicators of Crystallinity
(4). Morphological structure. including length of chains between folds in
crystals and spherulitic structure. may be studied by light scattering (122.123)
small-angle way scattering (119.121.124). and electron microscopy (125).

Highly crystalline polymers such as polypropylene have a complex mor-
phological structure. The polymer chains .generally appear to fold into,
laminar structures on the order of 100 A thick (125- 129). with most chains
turning and reentering the lamina from which they emerged. Figure 1.
These lamellae stack together in layers to form ribbon-like structure®.
Between the layers are amorphous-like chain folds and some chains that
go from one layer to the nelt to tie the entire structure together. Between
(he ribbons is more amorphous material. The lamellae often are part of a
more complex spherulitic structure in which twisted lamellae ribbons ra-
diate from a nuclcalion center (125,1 27.124.130). Slow growth of the crys-
tallites and annealing emphasize spherulitic structure, whereas quenching
minimizes it. Figures 8 and 9 illustrate .schematically some of the possible
chain arrangements in crystalline polymers (131-133).

If the ordered, crystalline regions are cross sections of bundles of chains
and the chains go from one bundle to the next (although not necessarily
in the same plane), this is the older fringe-micelle model. If the emerging
chains repeatedly fold buck and reenter the same bundle in this or a dif-
ferent plane, this is the folded-chain model. In either case the mechanical
deformation behavior of such complex structures is varied and difficult to
unravel unambiguously on a molecular or microscopic scale. In many re-
spects the behavior of crystalline polymers is like that of two-ph;ise systems
as predicted by the fringed-micelle- model illustrated in Figure 7, in which
there is a distinct crystalline phase embedded in an amorphous phase (134).
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Figure 7 Chain folding in a polymer crystallite. The number of re-enttrant folds .per
unit surface area would be much higher than sketched here,.

A long palmer chain can go through several crystallite and amorphous
regions..

A. Melting Points

Crystalline polymers do not have sharp melting paints. Some of the crys-
tallites, which are small or imperfect, melt before the final melting point
is reached. An equilibrium theory giving the degree of Crystallinity as a
function of temperature for crystallizable copolymers has been developed
by Flory (135). A nonequilibrium theory that may be applicable for some
quenched polymers has been proposed by Wunderlich (136). In the crys-
tallization of copolymers, the longest segments of the crystallizable com-
ponent crystallize first at the highest temperature. At lower temperatures
the shorter segments crystallize. This is expected since low-molecular-weight
homopolymers melt at lower temperatures than do high-molecular-weight
homopolymers, as given by (137..138)

2RM,

L
T W= BH.M, 49

InthisequationTm is the melting point in Kelvin of polymers with a
number* average molecular weight M,. Polymer of infinite molecular
weight melts at 'Tm,. The molecular weight of the monomeric unit is
M,, R the gas



Mechanical Tests and Polymer Transitions . §8

Figure 8 Fringe-micelle model of crystalline polymers. (Pram Ref. 131, )

constant, and AHu the heat of fusion per mole of crystalline polymer re-
peating unit.

Copolymerization usually lowers the melting point by shortening the
length of crystallizable sequences. For random copolymers the lowering of
the melting point is (138)

11 R,
R I (45)

m

where X is the mole fraction of the crystallizable comonomer 4 in the
copolymer. Solvents and plasticizer also lower the melting point according
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A amorghous “phase”
o OF glustered hbnlg (hat sleetched)
'U‘ " "U GG cryslal grawth on bulk malenal
I end ol achamn
[ feur-posnt didgram
LA Iong backlolding
MF  mugretaog fold
" Foparacrystaliing layeriattice
5 slraght chans
58 snon backiniding
SC single crystals
SF single hibnts (cold sirelched)
SH sheanng region
§7  Statton madel
gy

Figure 9 Types of chain ordering and folding which are possible within and be-
tween lamellae and between ribbon surfaces. In real, well-crystallized polymers,
these variations he relatively far apart and the forms SC". CF, SB. and A predom-
inate. (From Kef, 132.)

to the equation (138.140)

I 1 RV, ”
ol VT (dy — xibi) (40)
The molar volume of the polymer repeat unit is Vu V, is the molar volume
of the solvent, fi, is the volume Fraction of the solvent, and Xi is an inter-
action term defining how good the solvent is for the polymer. The term

X| is negative for very good solvents and goes to about 0.55 for the limiting
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case of very poor solvents. Good solvents lower the melting point more
than do poor solvents.

Appendix III lists the melting points of many common polymers. More
complete tables of melting points and heats of fusions may be found in
Refs. 4, 38, 140, and 141.

Chemical structure factors affect the melting point and glass transition
temperature in much the same manner. A good empirical rule for many
polymers is (142-144)

& 2w 0.04 (47)

[
4

Tt | Pt

where the temperatures are given in Kelvin. Symmetrical molecules such
as poly(vinylidene chloride) tend to have ratios about 0.06 smaller than
unsymmetrical molecules such as polypropylene.

PROBLEMS

1. Plot the various definitions of strain as defined in Table 2 as a
function of AL/L;, from ALIL;, =0 to ALIL, = 2.

2. Polystyrene has a shear modulus of 1.25 x 10" dyn/cm’ and a
Poisson's ratio of 0.35 at 25°C. What is its Young's modulus in
pounds per square inch?

3. A rubber has a shear modulus of 10" dyn/cm’. What is its modulus
in the following units? (a) psi; (b) pascal, or newtons/m” (SI); (c)
kg/enr’.

4. Aload of 100 Ib is applied to a specimen that has a length of 4 in.
between grips, a width of 1 in., and a thickness of 0.10 in. If the
Young's modulus of the material is 3.5 x 10™ dyn/cm”, how much
will the specimen elongate when the load is applied?

5. A parallel-plate viscometer with a geometry such as shown in the
lower left corner of Figure 2 is filled with a polymer melt of 10"
P. What force is required to move the plates parallel to one another
at a velocity of 1 cm/s if the spacing of the plates is 0.1 in. and
their area is 1 in.*?

6. Derive the equation (V - V,)/Vy= (1 — 2v)e. V, is the volume
of the unstretched specimen.

7. What is the percent volume increase per percent elongation in a
specimen when v = 0.3? When v = 0?

8. Plot (7', - T") as a function of cross-linking using DiBencdetto's
equation for poly(l,4-buladicnc) and for polystyrene.
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y. Plot Ty as ;i function of volume fraction of vinyl acetate for vinyl
chloride/vinyl acetate copolymers using equations (38), (39), ;md
(41). assuming thai R = 2.

Mi I lomopolymer 4 melts at 200°C with a heat of fusion of 2tX)O cat/
mo! ot repeat unit. What is the expected melting point of a random
enpotymer containing It) mot “c of a comonomer B. which does
not enter into the crystal lattice?

[ I. Toluene behaves as a plasticizer for polystyrene. Estimate the 7""
value of a polystyrene containing 20 vol °/( toluene,

REFERENCES

1. AS I'M Standards, American Society for Testing and Materials. 1916 Race
St.. Philadelphia, PA. The corresponding European standards are the DIN
Standards. DIN Deutsche Institut fiir Normung, eV (German Standards
Institute. Inc), Beith, Berlin.

1. T, Alt'rcy. Jr.. Mcciuuuc.at Behavior of High Polymers. Intersaence, New York.
1948.

3. J D), Ferry. Viscoelastic properties of Polymers, 3rd ed., Wiley. New York,
1980.

4. 1, n, Nielsen. Mechanical Properties of Polymers. Van Nostrand Reinhold,
New York. 1962.

5. J V.Schinit/., I-'d,, Testing <>/ Polymers, 4 vols., Intcrscicnec, New York,
19h5 and later years.
fi. A-V. Titliolsky. Properties and Structure uf Polymers, Wiley, New York,

ION).7. K, NilSL-hc and K. A. Wolf, 1-'ds., Sirukiur andphysikulisclies
Verhalten der

J.M.He.ity.V Rheol.28.1«1 (1484). 9 p. J. Blat/.. Rubber Chem.

Techno!., 36,1467 (19631. HI.  O..1 Pla/ek, J. Polymer Set.. A2. 6, 621

(1%8).

11. L. C. I.. Slruik, Rheol. Acta. 6. 119 (1967).

12. \V.S. Cramer.J Polymer Sci., 26,57 (1957).

13.  A-J. Slaverman and P. Schwar/1. in Die Physik der Hochpalymeren, Vol.
4.11. A. Stuart, Ed., Springer-Verlag, Berlin, 1956, Chap. 1.

14. ] G. Williams, Fracture Mechanics of Polymers. Wiley, New York. 19H4.

15  AS'I M Standard D1709-67, American Society for Testing and Materials,
Philadelphia.

Hi. AS I'M Standard D256-50, American Society for Testing and Materials. Phil-
adelphia.

17. 1). Telfair and U. K. Nason, Mod. Plastics, 20, 85 (July 194.1).

15. D. R. Morey. Iml. EnR. Chem.. 37. 255 (1945).

W. ASTM Standards DIH22-6H and D22H9-W, American Society for Testing am£
Materials. Philadelphia.



Mechanical Tests and Polymer Transitions 2%

20.

21.
22.
23.
24.

25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

40.
41.

45.

46.

47.

S. Strella, in High Speed Testing, Vol. 1, A. G. H. Dietz and F. R. Eirich,
lulv. Inlerscience, New York, 1960, See also articles in succeeding volumes
of this yearly series.

G. R. Irwin. J, Appl. Merit.. 61, A49 (1039).

S. Mosiovoy and H. J. Ripling, J. Appl. Polymer Sci., 10, 1351 (1966).
ASTM Standards, 31, 1099 (1969). ASTM STP 463. 249 (1970).

ASTM Standards D648-56, D/535-65T, and D1637-61, American Society for
Testing and Materials, Philadelphia.

W. Kiiuzmunn, Chem. Rev., 43. 219 (1948).

N. Bekkedahl. ;. Res. Nail. fiur. Sid., 13,4j1 (1934).

B. Ke, Newer Methods of I'ohrih-r Characterization, Interscience, New York,

R.II. Wiley and G. M. BHUKT, J. Polymer Sci., 3, 647 (1948).

J. A. Sauer and A. E. Woodward, Rev. Mod. Phys., 32, HS (1960).

L. Monnerie. NATO Adv. Study Inst. Scr., Sar. C, Static Dynamic Prop,
Polymer Solid State, 94, 271 (1982).

F. D. Tsay, S. D. Hong. J. Moacanin, A, Gupta, J. Polymer Sci. Polymer
Phys. Ed., 20, 763 (1982).

R. M. Fuoss. J. -4m. Chem. Soc, 63, 369, 378 (1941).

T. H. Sutherland and B. L. Funt. J. Polymer Sci., 11, 177 (1953).

H. Thurn and F. Wuerstlin. Kolloid Z., 145, 133 (1956).

N. G. McCrum. B. E. Read, and G. Williams, Anelastic and Dielectric Effects
in Polymeric Solids, Wiley, New York, 1967.

R. F. Landel and R. F. Fedors, in Fracture Processes in Polymeric Solids,
B. Rosen. Ld., Wiley. New York, 1964, p. 361.

T. L. Smiih, in Rheologv, Vol. 5, F. R. tirich, Kd., Academic Press, New
York. 1969. p. 127.

J. Dranderup and L'. II. imuiergut, lids., Polymer Handbook. 2nd ed.,
Wiley. New York, 1975. P;tit M1. pp. 179-192.

C. L. Ueatty Mui K 1.. Kara?./, J. Polymer Sci. (Phys.), 13. 971 (1975).
W. U. Fitzgerald and L. /i. Nielsen, proc. Roy. Soc, A282, 137 (1964).

J. F.. Mark, A, Ilisenber”®, W. \V Graessley. L. Mandelkern, and J. Koenig,
Plivsical Properties of Polymers, American Chemical Society, Washington,
D.C., 1984.

J.1I. Gibbs and E. A. DiMarzio, J. Chem. Phys.. 28,373 (1958).

G. Adams and J. I1. Gibbs, J. Chem. Phys., 43, 139 (1965).

M. I1. Cohen and D. Tumbull, J. Chem. Phys., 31, 1164 (1959).

M. Goldstein and R. Siniha, Eds., The Classy Transition and the Nature of
the Glassy State. Ann. N.Y. Acad. Sci., 279 (1976).

R. F. Landel and R. F. Fedors, Mechanical Behavior of Materials, Vol. 111,
Society of Materials Science, Kyoto, Japan, 1972, p. 496,

D. H. Kaelhle, Computer-Aided Design of Polymers ami Composites, Marcel
Dekker, New York, 1985; Physical Chemistry of Adhesion, Wiley, New
York, 1971.



30 Chapter 1

AH. R. (m'- Rover and H. S. Spcnu”r. Adwmvs in Colloid Satwc, Vni, 2,
suieitL'*;. New York. W4ft. p. L.

*W M. UIMMCIIL 7 < hvm. I'hvs., 19, W) (1W». &I T.CT K>\.imlI'. J.

Fiory. ./ ,4/ip/. /Viv.c.. 21. SKI (\WI). 51. T',. HIH.VIK\ I'hvsiiti! I'rojHTiin of

Polymers. Inierscicnvt;. New York. I' S2T. M t\ Shetland A. tisenlx-rp. Rubber

Chen, Techno!. {Rubber Rev.): 43,,

. AL UisenluTj! am) M. CSIwrn. Ruhfrer Chem. Tec-hnol. Itiuhtk'r Rev.}, 4],
ISh(IV7I1J. -54  .!. Hirov,. T. L.uinc. I. Tncnv;il. and J. Pouchly. Colloid
failymrr Scf., 26"
27(iyN2).
S5. K. A, Hiiytr-./. Appl. Pnlvmcr Set.. 5,318 (1W>1). 5{v. W. A. Liw iirnl
1. 11. Sovell. ./m M/'P" iWywr Sri, 12. 1.27 (IWKI-57"  W. A. l.c-c. V.
/'p/vinir,Vi,. A2. 8. 555 (147(iJ. m&*: 19. !*m Wvituii,,/ .1/)/)/. rnlynu-rSd.. 11,
143'M1%7]. «>.  H (i. I'dlk-r.,/ Mai-nwniL Sn. [t'hyx.l. 1S. 5'/5 T I'HSI, mNL.
I), K. Wilt. M S Allicri. (nU 1. J. Croitlturb, ./- I'vIVHHT.Sci, (Z'/iw.). 23,

11i>5 (1'iss)
HI I T KIL-ihiull iiiid M 1i;ii/iT. Anxvw  Mukroiiu'l. ("Jinn . Ki. 57 (
W, R F, Ivtlni-*. I'niymvr luif!. .V.r. 14, 147.-472 (1*]74). «to}. K.
Siillliil .iml K I, |[In>vr.J. Clwm. I'hvs.. H. HH)3 (17ilh m. J. Miiiiviinni
jimf K, Simliii. ./. T/K-N; /'/a.v.. 45, 'TW (I'Jtm]1. ft? .M OKnlK../
ri'lrnia \ti.. 57.42'7 (IWOi. Irt\ I' TU-vilt:nnuin .wul 11- 1J Ciiiifkiiiji.
Knthiul /... IW. Ui (I'Kvi). (>7, M, S, Piiler"m, ./. Apftl. t'Jiv\.. 35, 17fi
(1'«i4).
hK. IT. Pfir.jilia iiml O- M. M.iriin../. ««. ,V;r/. fiur. Std,, A6H. 273 (|W
ti4, 1', ZuflkT../. I'ntvmvr Sn. f/Vm\ ). 20. 13N5 (WX2). 3i,t.. G.H_
McKciinii. in i'otnprt'lu’/nive Polymer Scirncr. Vol. 2. fhilvawr

fttiVs.C Hintli iuiil t". Price. I-ds.. Ptrgamnn Press, Oxford. 14X9. 71
A, K WWlwarviiind J. *\. Sxucf. Adv, Polymer Sk1.. 1.114.(1758). 72. .
M*;i|lioor. Plnsusoj NwhiTysHiiitnt Solid.’,. North-i iolland, Amstc

1*5.p 23L
7.1. K.V, Hover. Pnfymrr A'n.i*. &I,. fi. Ifil 1|%H), 74. J. A. SaiK-r.i-
Pnlwnn Sn . (TJ2. W 11<*71). 7.S, ,1 Mtft|b(K'r- in Wnilvoultu Basis nf
Tnmsiutms and HrlaSHimh'i.I": ],

I-.i'J... Cionltin .mil firci*li. Nuw York. 1*>7«, p- 75. 7ft. 11 W. SiarkvH-
Milicr. Jr.. iintl T. Avukkm. MmmmiiUrntto.il. 77. T. (i Kw and I*. J. ROFvV, J.
Polymer Sci.. 14. .U5 (I'>54). 1H, K. lixhi-rrciUT ;uul I). Khodc-Liehenmi,
Mukrumnl Chem.. 49. M 7U. J.M. CJ. fuwTic. /-.'wr. Polymer J,. M. 27 (1'17M,
WL k. f. lieiwr. MucrmnolreulcA. 7.142 (1'J74|. K1. K. I*, ROVLT.
r.'uvilopciiia of Polymej Sfirnce ami Tn'tmafoav, Veil.

Wiley. NL-vv York. 1%(). p. 4dI.

H2* K- I'L-bLTTCiicr :inO fi. Kanip. J Ch<>in. Phys . 1K. >W (1°50),
M. T. ti, hiXijjuJIS, U h:\ek.7. Polynwi-Sri,, IS. 371. 3'J1



Mechanical Tests and Polymer Transitions 39

R4. M. h. Drumm. C W, H. Drtiljte. and U E. Nielsen. MW. /:*£. Chetn.. 48.

SS. G M. Martin and L. Miuxlolk-jm. /. Res. Null. Hur. Sid.. 62. 141 (1459)..

H6. 1II. V. Tk-mzc. K. Schmn-iki. *i. Schncll. and K. A. Wolf, Rubber Chem:,
Terhnnj}.. 35. 776 (1%?.).

87. A.S. Kenyon and L. Ii Niclsm. 7. Mucromttl, Sa . A3.27? (1*"9),

K# L. P.. Nielsen,./. Mwronwt. Sa Hew MiUwmni ('hem,, 3. 69 (1969).

Jty. Y. Diam;inl. S. Wclner, »nd D. Kalz. Polymer. 11. 4% (1970.).,

90. J- P. Bell. y. .'l/V* rnh-rmr Sr™. 14, 1901 (1970).

91- H. A. Flockc Kunwioff.-. <(>. MX n%6»-

W: W. Fiwh. W. Htifm;inn. .mil H. Sch.miti. ./, 4j?nl, I'tflv.W'r Sci,, U. 283

93. E, A. Di'Miirz.io,./. Res. Nntl, Ihtr. Std.. AtiS. til 1

94. A. T- DiB-L'ncik'ltiv. unpuNislieil private comiiiumcatimi,

95. F.N Kclky and F. Hucchi:. 7 Polymer Sci.. 14.

9ft. M- Climltiniitid .1 S, Taylor. 7. App! Chen,, (1. tuition). I. 493 (IM52)-97.
L. [w. NUMK'U. Pmiii'ti'ifl the Properties of Mixtures', Maavl D.L'kkt?r. NcW York.
W7H.

99. M,~> ('In.7. Polymer S<i \i'heHi.). I'J. 17fi7(IWI1L
1(10.  T.S. Chfjw, Miicrnitmirveth's. 1. 32 1 I'WM
L. A.. Wo.HL. J. Polymer Sd.. 28. 319 ( 195S}.
K. 11, Illcis. /. rU'kfr, *rhrm . 70. 353 (IWi).
M Ilirouka J11K) T. K;U". .7. Polvmer Su lien), 12,31 |1*>74Y,
K, Miiruinctn ;uid A, Rom.nun-, Pulymrr. 1C>. 173. 177 (1975).
N- W. Jolinsttm.y Man-nmnl. Sri.. CM, 215 (1"7ft)
D. ft. Rtailcy and P. M. MUIHIML'IIS. 7. P"/vi>icrSi i. (Cheni.), 16, 1Ji'
1(17. N. W.JolmjiUm. 7, Mutrnmnl. Sci,, A7. 531 (1973).
A. fi. Tonclli. Matromolenite\, 8, 544 (1975).
P. R, CoiK-hmiin. Macwwnlearics. 15. 770 (1VW).
L. H NivKL-H nnd R. Budni.ihl, 7. 4p;'i". fflw,, 21. 4K« (1950).
111. K.I;, Polm.-intecr. J, A.'Thonn;, and J. 1). Iklitter. Retbber (.'hem.
39. 1403 (IWi).
112 K.I1. HL'TIWL'AL'. R. Kai"L-i. .M11! K-- Kupluil. Kolloitl '/.-. 157. 27 (
113. E. Ho urul T. Iliilakfyamn. 7. Polymer Sn. [Phyx,). 12. 1477 (1974).
114. W, O, Slran.nK 7. puiymei .SV/..CZO. 117(1%7)..
115. Ci. (iec, P, N.IlanIcy. .1, H M Ilcrlx-n, amt [.{. A. Ljjincelii-y, Psfeja"F* L.
365 (I'M)).
116. W. V. Jnhmt.in iiiid M. Shen. ./. Polymer fir.. Aj, 7. 19K3 (Mfflfr.
117- R. L. Miller, Lncvflopetitti o\ Polymer Scie/ice mid Tecfuiolofiy, Vol. 4,
Wiley. New York. I'Wi. p -M9, UK. R. L Miller, in Crystalline Olffin
Polymers. Pan 1. R, A, V. Raff and K, W,
Doak, Kdy. liituivifiHL'. Ni-w >'ork. IW"\ p, 577.



3$

Chapter 1

1 19. i. li. Spntietl and IL. S. Chirk, in Methods of Expertffienral Physics, Vol. 16,

12(1.

Part B. Polymers; Crystal Structure and Morphology, R. Fav;i, t.d., Academic
Press, New York, lyRt), Chap. 6.2, p. I,
F. P, Price, J. Cht'm. Phys., 19,973 (1951).

121.J.-1. W;ing and 1. R. Harrison, in Methods of Experimental Physics, Vol. ]6. Part

122.
23.
24,
25
10,
127.

5

JHI,

130
131
132.
133.
134.
128,
1LVi.
H7.
135.

I'™M
1-4li
141

112
111
144.

R. Polymers: Crystal Structure and Morphology, R. Fava, Ed., Academic
PreM. New York, 1980, Chap. 6.2, p. 128.

M. B. Rhodes ami R. S, Stein, J. Appl. Phys.,i2, 2344 (1%").
R, S. Stein. Polymer F.nf. Sci.. 9, 320 (196")).
(i Pomd. ,-ir/v. I'nlvmer Sci.. 2(3), 363 (19ftl).
IV1i. <icil. fli'lvmvr Single Crysmh. Intciscience. New Ynrk. IMfi.l,
P.H Tilt. ./. rnlvarr Sa,. 24. 301 (1957).
A Kcllor. /'/i*f. Must.. 2. 1171 (1957).
B- W. Fisher. / Naturfmsrh., 12A. 753 (1957).
P. Ini;rimi ami A. PciciWn"-Jicvctopediaof Polymer Science and Technology,
Vol. y. Intervrictice. New York, 1968. p. 204.
II I). Kuilh ;1iHI F. J. Padden. Jr.. 7. Polymer Sci.. 41, 525 fN59),
W, M. H. Bryanl. J. Polymer Sri., 2. 547 (1947).
R. lUiwman. Vnlymer. J, 349 (1%2).
H. W. KLscher, Polymer J., 17,307 (1985).
K. IkTmimn.O. Genigross. and W. Abi(zrZ. Phys. Chvm., BI1O, 371 (\9M)k
p. .1 I-Uiry. Trans. Faraday Soc. 51. S4K (1955).

H WnfulerhVli, J. (hem. Phys.. 29, 1395 (1958).
I' J.Flor\.7 f/n-m. P/Jv.v.,'t.1, 684 (1947); 17, 223 (1949).
I' J. Flory. Principles a/ Polymer Chemistry, Cornel! Uiuvprsity Pr’s, Ithaca,
N_Y . I'W, Chap. 13.
I- Maiidcikem. {'firm Rev., 56, 903 (1956).
I . Muuiclkfin. Cnsnillizut'tim of Polymers, McGraw-Hill, New York. 1%4,
R I MillL-tandI I-. NicKen, 7, Polymer Sci.. 55, M3 (1%1).
K d" Hi£M\iin,J P,>IvinrrSci,9,47i\(\*i$2).
R.1 Wityvr.J, Appl. I'hvi.. 25. K25 (1454),
W A Ti-candti. J. Kni*lH, Urit. Polyntrr ./, 2.,, 7" (1970].,



2
Elastic Moduli

I. ISOTROPIC AND ANISOTROPIC
MATERIALS

A. Isotropic Materials

Elagtic moduli measure the resistance to deformation of materials when
externa forces are applied. Explicitly, moduli M arc the ratio of applied
stress cr to the resulting strain e

02

= (D
In general, there are three kinds of moduli: Y oung's moduli E, shear moduli
G, and bulk moduli K. The smplest of al materials are isotropic and
homogeneous. The distinguishing feature about isotropic elastic materials
isthat their properties are the same in dl directions. Unoriented amorphous
polymers and annealed glasses are examples of such materials. They have
only one of each of the three kinds of moduli, and since the moduli are
interrelated, only two moduli are enough to describe the elastic behavior
of isotropic substances. For isotropic materials

9GK
T3K + G 2)
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It is not necessary to know the bulk modulus to convert E to G. If the
transverse strain, €,, of a specimen is determined during a uniaxia tensile
test in addition to the extensional or longitudina strain e,, their ratio,
called Foisson's ratio, v can be used:

v= - 3
€, .
E = 2G(1 + v) = 3K(1 - 2v) (4)

For soft clastic solids v = §; for glassy polymers v is in the range 0.3 tc
0.4—often about 0.3’3.

B. Anisotropic Materials

Anisotropic materials have different properties in different directions (1-
7). 1-Aamples include fibers, wood, oriented amorphous polymers, injection-
molded specimens, fiber-filled composites, single crystals, and crystalline
polymers in which the crystalline phase is not randomly oriented. Thus
anisotropic materials are realy much more common than isotropic ones.
But if the anisotropy is small, it is often neglected with possible serious
consequences. Anisoiropic materials have far more than two independent
clastic moduli— generally, a minimum of five or six. The exact humber of
independent moduli depends on the symmetry in the system (1-7). Aniso-
tropic materials will also have different contractions in different directions
and hence a set of Poisson's ratios rather than one.

Theoreticians prefer to discuss moduli in terms of a mathematical tensor
that may have as many as 36 components, but engineers generally prefer
to deal with the so-called engineering moduli, which are more realistic in
mogt practical situations. The engineering moduli can be expressed, how-
ever, in terms of the tensor moduli or tensor compliances (see Appendix
V).

Note that in dl of the following discussions the deformations and hence
the strains are assumed to be extremely small. When they are not (and
this can often happen during testing or use), more complex treatments arc
required (5-7).

A few examples of the moduli of systems with simple symmetry will be
discussed. Figure 1A illustrates one type of anisotropic system, known as
uniaxial orthotropic. The lines in the figure could represent oriented s
ments of polymer chains, or they could be fibers in a composite material.
‘This uniaxially oriented system has five independent elastic moduli if the
lines (or fibers) ara randomly spaced when viewed from the end. Uniaxial
systems have sx moduli if the ends of the fibers arc packed in a pattern
such as cubic or hexagonal packing. The five engineering moduli are il-
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Foure 1 (A) Uniaxidly oriented anisotropic material. (B) The eagtic moduli of
uniaxidly oriented materials.

lugrated in Figure 1B for the case where the packing of the elements is
random as viewed through an end cross section. There are now two Y oung's
moduli, two shear moduli, and a bulk modulus, in addition to two Poisson's
ratios. The first modulus, /,, is called the longitudinal Y oung's modulus;
the second, E;, is the transverse Young's modulus; the third, G, is the
transverse shear modulus, and the fourth, G,,; is the longitudinal shear
modulus (often called the longitudinal-transverse shear modulus). The
fifth modulus is a bulk modulus K. The five independent elastic moduli
could be expressed in other ways since the uniaxia system now has two
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Poisson's ratios. One Poisson's ratio, v, gives the transverse strain €,
caused by an imposed strain e, in the longitudinal direction. The second
Poisson's ratio, vy, gives the longitudinal strain caused by a strain in the
transverse direction. Thus

=t for a longitudinal force

1
—— for a transverse force

where the numerators are the strains resulting from the imposed strains
that are given in the denominators.

The most common examples of uniaxially oriented materials include
fibers, films, and sheets hot-stretched in one direction and composites
containing fibers dl aligned in one direction. Some injection-molded ob-
jects are also primarily uniaxialy oriented, but most injection-molded ob-
jects have a complex anisotropy that varies from point to point and is a
combination of uniaxial and biaxia orientation.

A second type of anisotropic system is the biaxialy oriented or planar
random anisotropic system. This type of material is illustrated schematically
in Figure 2A. Four of the five independent elastic moduli are illustrated
in Figure 2B; in addition there are two Poisson's ratios. Typical biaxialy
oriented materials are films that have been stretched in two directions by
either blowing or tentering operations, rolled materials, and fiber-filled
composites in which the fibers are randomly oriented in a plane. The
mechanical properties of anisotropic materials arc discussed in detail in
following chapters on composite materials and in sections on molecularly
oriented polymers.

. METHODS OF MEASURING MODULI

A. Young's Modulus

Numerous methods have been used to measure elastic moduli. Probably
the most common test is the tensile stress-strain test (8-10). For isotropic
materials. Young's modulus is the initial slope of the true stress vs. strain
curve. That is,

da FIA
E=) - A 6
d) T L..)/Ln),_,,... (©)
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Figure2 (A) Biaxid or planar random oriented materiad. (B) Four of the moduli
of biaxidly oriented materials.

where FIA is the force per unit cross-sectional areat, L the specimen length
when a tensile force F is applied, and L, the unstretched length of the
specimen. Equation (6) also applies to and gives one of the moduli of
anisotropic materials if the applied stress is paralel to one of the principal
axes of the material. The equation does not give one of the basic moduli
if the applied stress is at some angle to one of the three principal axes of
anisotropic materials.

It is also possible to run tensile tests at a constant rate of loading. If the
cross-sectional area is continuously monitored and fed back into a control
loop, constant-stress-rate tests can be made. In this case the initial slope

tFIA,. where A, is the initial arca, is often called the enginecring stress, «; the force per
unit actual or deformed area, F/A | is called the true stress, o,. For polymesic materials, where
strains can be large, the difference between o and o, can be considerable. Defining the stretch
ratio A as L/L, (= 1 + €). o, = Au for incompressible materials.
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of the strain-stress curve is the compliance

- EE_ _ (L_'—” L())/L() (7)
do, FIA
Note that the usua testing mode for compliance is constant load or constant
loading rate, so to obtain truly useful data, some means must be taken to
compensate for the change in area
Young's modulus is often measured by a flexural test. In one such test
a beam of rectangullar cross section supported at two points separated by
iadistance Ly is loaded at the midpoint by a force F, asillustrated in Figure
12 The resulting central deflection V is measured and the Y oung's mod-
ulus E is calculated as follows:

LT

= 8
4CDYY )

where C and D are the width and thickness of the specimen (11,12). This
flexure test often gives values of the Young's modulus that arc somewhat
too high because plastic materials may not perfectly obey the classical linear
theory of mechanics on which equation (8) is based.

Y oung's modulus may be calculated from the flexure of other kinds of
beams. Examples are given in Table 1 (11,12). The table also gives equa-
tions for calculating the maximum tensile stress agix and the maximum
elongation e,,.x, which are found on the surface at the center of the span
for beams with two supports and at the point of support for cantilever

Table 1 Young's Modulus from Flexure of Beams

Beam geometry, support, and loading E Tmax €

1. Rectangular beam, center loaded, FL; 3FL, 6DY
two supports (three-point bend) 4CDYY 2002 L}

2. Rectangular beam. two supports, LIFLY 3FL, f&HDY
two equal loads F72 at L,/4 and 64C DY 4CD° L3
3L,/4. (four point bend)

3. Rectangular cantilever beam fixed AFLy 6rL, iy
at one end with load at other end Y oh: 2L

4. Rod of diameter D with two 4K, RFL, ony
supports, center loaded InD'Y aD? L

S, Cantilever beam of circular cross 64 FL 02K, any
section fixed at one end with load D'y wh? 212

at other end: D = diameter
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beams. In these equations /" is (he applied force or load, Y the deflection
of the beam, and D the thickness of specimens having rectangular cross
section or the diameter of specimens with a circular cross section.

Young's modulus may aso be measured by a compression test (see
Figure 1.2). The proper eguation is

o FIA F. L,

E= - "1 ©)
Generally, one would expect to get the same value of Young's modulus
by either tensile or compression tests. However, it is often found that
values measured in compression are somewhat higher than those measured
in tension (13-15). Part of this difference may result from some of the
assumptions made in deriving the equations not being fulfilled during actual
experimental tests. For example, friction from unlubricated specimen ends
in compression tests results in higher values of Y oung's modulus. A second
factor results from specimen flaws and imperfections, which rapidly show
up at very small strains in a tensile test as a reduction in Y oung's modulus.
The effect of delects are minimized in compression tests.

In any type of stress-strain test the value of Y oung's modulus will depend
on the speed of testing or the rate of strain. The more rapid the test, the
higher the modulus. In a tensile stress relaxation test the strain is held
constant, and the decrease in Y oung's modulus with time is measured by
the decrease in stress. Thus in stating a value of the modulus it is aso
important to give the time required to perform the test. In comparing one
material with another, the modulus values can be misleading unless each
material was tested at comparable time scales.

In creep tests the compliance or inverse of Y oung's modulus is generally
measured. However, Young's modulus can be determined from a tensile
creep test since the compliance is related to the reciproca of the modulus
(16,17). Whereas stress-strain tests are good for measuring moduli from
very short times up to time scales on the order of seconds or minutes,
creep and stress relaxation tests are best suited for times from about a
second up to very long times such as hours or we«ks. The short time limit
here is set by the time required for the loading transient to die out, which
takes a period about 10 times longer than the time required to load or
grain the specimen. When corrections are applied, however (18), the lower
limit on the time scale can aso be very short. The long time limit for creep
and stress relaxation is set by the stability of the equipment or by specimen
falure.

Although creep, stress relaxation, and constant-rate tests are most often
measured in tension, they can be measured in shear (19-22), compression
(23,24), flexure (19), or under biaxia conditions. The latter can be applied
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by loading or straining flat sheets in two directions (25-30), by simulta-
neous axid stretching and internal pressurization of tubes (31-34), or by
simultaneously stretching and twisting tubes or rods (although the variation
of the shear strain dong the radius, noted above, must be remembered
here) (35-40). Creep and stress relaxation have been measured in terms
of volume changes, which are related to bulk moduli (41-44).

'‘B. Young's and Shear Moduli from Vibration
Frequencies

Free Vibrations

The natural vibration frequency of plastic bars or specimens of various
shapes can be used to determine Young's modulus or the shear modulus.
Figure 3 illustrates four common modes of free oscillation. In Figure 3A
and B the effect of gravity can be eliminated for bars in which the width
is greater than the thickness by turning the bar so that the width dimension
is in the vertical direction. The equations for the Young's moduli of the
four cases illustrated in Figure 3 are given in-Table 2 for the fundamental
frequency. The shear modulus for the natural torsional oscillations of rods
of circular and rectangular cross section are aso given in Table 2 (45).
Dimensions without subscripts are in centimeters;, dimensions with the
subscript in are in inches. The moduli are given in dyn/cm?. In the table,
R is the radius, p. a shape factor given in Table 3 (8,46), C the width, D
the thickness, p the density of the material making up the beam of total
mass m, P the period of the oscillation, f; the frequency of the vibrations
in hertz or cycles per second, and / the rotary moment of inertiaing « cm?®

Figure 3 Vibrating systems for measuring Y oung's modulus.
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Table 2 Equations for Dynamic Moduli from Free and Resonance Vibrations

Method and specimen Modulus (dyn/cm?)

1. Torsion pendulum, rectangular cross
section

_ 64mL] _ 38.541L;,
CDwP ~ C,DiuP
§nll _ 1.531IL,,

2. Torsion pendulum, circular cross section

G ERE T RP
k) Vihrnling‘c:m(ilcvcr reed, rectangular E o= 38.24pL* £
cross section G OEL
4. Vibrating cantilever reed, circular cross E = 16m?pl? f
section (1.875)*R?° "
5. Vibrating rectangular cantilever reed of E o= lon* (M + 0.23m)L> /2
mass m with mass M on ¢nd - cD? R
6. Free—free vibration of rod supported at E = 16m2pLf%
nodal points, circular cross section T (22.0)R?
7. Free-free vibration of rod supported at £ o= 48w L2 f%
nodal points, rectangular cross section (22.02D?
8. Longitudinal vibrations of circular rod of E - Anl(M _+ mi3)fy
mass m with large mass M on end -7 R?
9. Longitudinal vibrations of rectangular rod E = A LM + m/3)f% -
of mass m with mass M on end - cD

Forced Vibrations
Free and resonance vibrations do not permit the facile measurement of E
or G over wide ranges in frequency at a given temperature, athough with
careful work, resonance responses can be examined at each of severa
harmonics (47,48). In general, to obtain three decades of frequency, the
specimen dimensions and the magnitude of the added mass must be varied
over a considerable range.

In driven dynamic testing an oscillating strain (or stress) is applied to a
specimen. This is aimost always sinusoidal for ease of analysis. In this case

€ = € Sin w! (10)
The stress thus produced is out of phase with the input by an amount 8:
o = gy sin(wr + 3) = (g, cos 3) sin wt + (0, sin 3) cos wt (11)

so that oy cos 8 is the component of the stress in phase with the strain and
& dn 8 is the component exactly 90° out of phase with the strain. Since
the in-phase component is exactly analogous to thagj of a spring, and the
out-of-phase component to that of a viscous response, the ratio of the
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~ Table 3 Shape Factor p*

Width C
Thickness D "

1.00 2.249
1.20 2.658
1.40 2.9%
1.60 3.250
1.80 3.479
2.00 3.659
2.25 3.842
2.50 3.990
2.75 4.111
3.00 4.213
3.50 4.373
4.00 4.493
5.00 4.662
7.00 4,853
10.00 4.997
20.(¢0 S.168
50.00 5.206
Y0000 5.300
o 5.333

o= 5333 (1 - 0.63D/C) if C/D
> 2.

components to the maximum strain e, are called the storage and loss mod-
uli, respectively. Using the symbol M here to denote a generalized modulus,
then: '

I

0 cos & (12)

storage modulus M’
€

loss modulus M”" = ? sin & (13)
]

so the tangent of the loss angle is M"/M'. The two moduli are also called
the real and imaginary components of the complex modulus, where M* =
M' + iM" (see Problem 7). Here M can be £, G, or K, depending on the
experiment, i.e., depending on whether a tensile, shear, or volumetric
strain was applied. (Note however that the letter M is usualy reserved for
and intended to indicate the longitudinal modulus.) H stressis applied and
strain is measured, compliance is being determined, not modulus. It would
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TORSIONAL DEFLECTION

Figure4 Some test modes for measuring shear response. Arrows indicate direction
of the force or displacement applied to that surface.

be denoted as D for tensile compliance, J for shear, and B for bulk. The
compliance-modulus relationships for elastic materials have been given in
equations (1.16) to (1.18); those for viscoelastic materials are given in
subsequent chapters.

If a disklikc specimen is sheared between two end plates by rotation of
one over the other to obtain the shear modulus, then at any moderate twist
angle the strain (and strain rate) vary along the radius, so only an effective
shear modulus is obtained. For better results the upper plate is replaced
with a cone of very small angle. Figure 4 showsfche cone-and-plate and
two other possible test geometries for making shear measurements.

At high frequencies of 10* to 10" Hz, Young's modulus of fibers and
film strips can be measured by wave propagation techniques (16,49-53).
An appropriate equation when the damping is low is

E = pv? (14)

where p is the density of the material and v is the velocity of the ultrasonic
wave in it.

lll. RELATIONS OF MODUL: TO MOLECULAR
STRUCTURE

The modulus-time or modulus-frequency relationship (or, graphically,
the corresponding curve) at a fixed Temperature is basic to an understanding
of the mechanical properties of polymers. Either can be converted directly
to the other. By combining one.of these relations (curves) with a second
~ mgor response curve or description which gives the temperature depend-
ence of these time-dependent curves, one can cither predict much of the
. response of a given polymer under widely varying conditions or make rather
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detailed comparisons of the responses of a set of polymers (7,16,54-56).
These frequency/time response curves serve to delineate the effects of
changes in backbone structure (i.e., the type of polymer or copolymer),
molecular weight and molecular weight distriBution, degree of cross-linking,
and of Plasticization. For two-phase and multiphase systems such as semi-
crystalline polymers and polymer blends, morphology and interaction be-
tween the phases or components both play significant and complex roles
in determining the response. Here the ability to predict response from just
a knowledge of the response of the amorphous component or from the
responses of the individua blend constituents is ill rather poor. Never-
theless, great insght can be obtained into the response that is observed.

In the past it has often been the custom to measure the temperature
dependence of the dynamic modulus and loss tangent at a single frequency
rather than the frequency dependence at a single or set of temperatures.
Although the modulus -temperature measurement is very useful in ascer-

~taining qualitative features of response and the effect of the foregoing
molecular and compositional factors on it, it cannot be used for quantitative
estimates of the response under other test or use conditions. Moreover,
the results can be misleading if not used with care. The modulus-.time
measurement does not have these problems. However, examples of both
methods of presenting polymer response are described here. (Similar in-
structive generalizations of compliance--time/frequency and compliance-
temperature can aso tie made (16,57,58), although on the experimental
side single-frequency measurements akin to Figure 5B are seldom made
and there is no equivalent to the characteristic time of Figure 5A).

In this section we summarize the effect of structural and compositional
factors on the modulus of the simplest of amorphous polymers. Actual
polymers are usudly more complex in behavior than the generalized ex-
amples shown here. In later chapters we discuss more complex systems in
detail.

A. Effect of Molecular Weight

Figure 5A (solid line) shows the modulus-time curve for three different
molecular weights of an amorphous polymer such as normal atactic poly-
styrene. The modulus in the glassy region, aboutl()*10dyn/cm”2is dightly
frequency dependent at very short times (not shown). It drops about three
decades in the glass-to-rubber transition region; the slope of the transition
zone in G(t) is about - 1 on such a log-log plot. The response then levels
out to a nearly constant plateau of the rubbery modulus, about 1)6 dyrv
cm', and findly drops to zero at very long times or extremely low fre-
quencies. Beyond this point the material acts as a purely viscous liquid.
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Figure 5 (A) Relaxation modulus at a fixed temperature of a polymer sample:
(1) of very low molecular weight (dashed line on left), (2) of moderate to high
molecular weight (solid lines), and (3) when cross-linked (dashed line on right).
(B) Effect of molecular weight on the modulus-temperature curve of amorphous

polymers. Modulus is given in dyn/cm®. The characteristic or reference time is t\
the reference temperature, Tk.

45
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The length of the rubbery plateau increases with molecular weight, as
indicated: the longer the plateau, the higher the steady-flow viscosity. If
the polymer is cross-linked, the response levels off a the true rubbery
modulus. In this case the height of the fina plateau increases with increasing
degree of cross-linking.

~ The complete curve for the response of an uncross-linked polymer & a
‘fixed temperature, depicted here, covers so many decades of time that it
has only been measured a a single temperature on a very few low-molecular-
weight polymers. The experimental results seen in the literature are actualy
a composite of data taken at several temperatures over a limited time scale.
The effect of a temperature rise is to translate the main transition in the
curve of Figure 5A to the left, toward shorter time, with essentially no
change in shape.

The response at a single low frequency (or a fixed time of observation
in stress relaxation) as a function of temperature is depicted in Figure 5B.
If the time scale of the experimental technique is about 1 s, the drop in
modulus at the transition zone takes place near the (dilatometric) glass
transition temperature of the polymer. "The initial decrease starts below Ty
and the midpoint of the change occurs above 7. If this drop in modulus
occurs above room temperature, the polymer is arigid glass; if well below
room temperature, the polymer is a viscous liquid or an elastomer. For a
high-frequency measurement the transition would start and end at the
glassy and rubbery plateaus, but the slope would be much less.

Thus to contrast the responses of two polymers, one can either compare
their time--frequency response at a fixed temperature (e.g., a room or
some other operating temperature), so that their characteristics during use
under the same conditions are compared, or they can be compared at
equivalent temperature (e.g., 7" or 7 + AT, so that the nature of their
_responses arc compared. Just as there is a temperature of reference in
Figure 5B. 7. there isalso avirtually unused time or frequency of reference
in Figure 5A. li is essentiadly the time at which (7(0 drops to a value of

10" dyn/cnr' (or C7* = IT?> X 10" (16). The magnitude of this reference
time or frequency is determined by the rate at which segments of the
polymer chain can diffuse past one another (i.e., by a very locd viscosity
(16,5")- 'I'nis time scale also depends on structural features of the chain
segment, such as the monomer molecular weight My, the effective bond
length of bonds along the backbone chain a, and other molecular features
unique to and characteristic of any given chain; T « (0/My) £ ~ k £, k
= 1 cm/dyn. However, the prime factor, and the one used to characterize
this time scale, is the average friction that a monomer-sized segment offers
to motion. Table 4 lists somie representative values of this monomeric
friction factor, £, (16). Since £, is a measure of and related to a viscosity,
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Table 4 Monomeric Friction Coefficients of Sdected Polymers

log L, (dyn-sfcm) at:

Polymer T, M, a x 10%
k g/mol cm 298°C T, T, + 100°C
Methacrylate polymers
Methyl 100 6.9 0.66 (398°)
Ethyl 335 114 5.9 6.22 ~4.40
n-Butyl 300 142 6.4 3.81 -4.77
Rubbers
Hevea rubber* 200 68 6.8 -6.4] 4.47 -6.49
1,4-Polybutadiene® 172 54 6.0 -6.75 0.83 -6.16
1,2-Polybutadiene 261 54 7.55 -4.11 2.38 -7.01
Styrene-butadiene
copolymer* 210 65.5 6.7 -6. — -6.55
Butyl rubber? 205 56 5.9 -4.16 3.57 -4.46
Ethylene—propylenc
copolymer* 242 39.9 5.5 -4.50 3.10 -6.23
General
Polyisobutylene 205 56 5.9 -4.35 31.47 -4.67
Polystyrene 373 104 7.4 2.06 -6.95
Poly(vinyl acctate) 305 8o 6.9 4.29 -6.32
Poly(viny! chloride) 347 62.5 6 4.08f -7.46
Poly(dimethyl siloxane) 150 74 6.2 ~8.058 - 3.60 -7.50
Poly(ethylene oxide) 44

Source: Adapted from Ref. 16.

*Lightly vulcanized with dicumyl peroxide.

*Cis/trans/vinyl = 43:50:7, lightly vulcanized with dicumyl peroxide.

‘Random copolymer, 23.5% styrenc.

“Lightly cross-linked with sulfur.

Ethylene/propylenc = 16:84, by mole.

Difficult to cstimate reliably because % and (7% uncertain: based on “universal™ values.

it is temperature dependent. Hencb its value is dways given at a charac-
terigtic or reference temperature, either 7\ itsdf or Ty 4- KM). Although
poly(dimethyl siloxane) has the lowest value of £ and T, shown and
poly(methyl methacrylate) has the highest, there is no consistent correla-
tion of 4, and /].,.

Plazek has questioned the variation of * with tx (60). He suggests that
tag is a universal constant (of unspecified magnitude) that is independent
of structure and that the variation with 7%, in Table 4 is an artifact due to
the lack of good data around 7 and the consequent need to make an
unreliable extrapolation from higher temperature data. Nevertheless, the
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" high temperature variation remains, which is of more practical use to en-
gineers needing to compare the responses of different polymers.

In general, then, an examination of the effects of the operational vari-
ables temperature and frequency and of changes in the nature of the pol-
ymer is closdly tied ty) Tk and £a, which set the location of the transition
zone in plots such as Figure 5B and A, respectively.

' Molecular weight has practically no effect on the modulus from the
glassy state through the transition region and into the plateau. If the mo-
lecular weight is high enough to be of interest for most applications where
mechanical properties are important, neither 7* nor the reference time of
the response is affected by further changes in molecular weight. However,
the width of the plateau and the manner in which it drops off with time
or temperature are strongly influenced by both- the molecular weight and
the molecular weight distribution. Broader distributions lead to broader,
dower dropoffs. At a characteristic molecular weight, M,., which is polymer
specific, the plateau disappears. For M < M, both the characteristic time
of Figure 5A and 7 of Figure 5B are decreased and the curves shift to
the left, as shown.

The rubbery plateau is caused by molecular entanglements (16,54-56,
61 -63). Entanglements were formerly thought to consist of polymer chains
looping around one another. These widely spaced entanglement points
then serve as virtua cross-links. Since a typical polymer has a molecular
weight between entanglement points. A/,, of roughly 20,(XX), most mole-
cules will have several entanglements, and the number of entanglements
will increase with molecular .weight. Viscous flow occurs when a large
traction of the entanglements move permanently to relieve the stress on
them during the time scale of the experiment. A progressively higher mo-
lecular weight requires a correspondingly longer time or higher temperature
before viscous flow dominates the response. The modulus then takes an-
other drop from about 1<)’ dyn/cnr to zero. Thus the length of the rubbery
plateau is a function of the number of entanglements per molecule, MIM,
(10.54.56.64,65).

A more appropriate picture (66-71) considers that a randomly coiled
chain embedded in its randomly coiled neighbors is restricted from diffusing
laterally because most of the adjoining segments that it contacts, being
randomly oriented, will be transverse to it. Hence it istrapped in a tubelike
cage of its neighbors and can move only (or move primarily) by diffusing
along its own length. M, is now a measure of the tube diameter. Disen-
tanglement and the resulting flow then represents the diffusion out of this
tube by a snakelike motion called reptation (63) rather than a dipping
through the imagined entanglement loops. ‘The net effect is the same,
however, in that while the magnitude of rubbery plateau is gtill independent
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of molecular weight, the higher the molecular weight, the longer it takes,
in Figure 5A, or the higher the temperature, in Figure 5B, before viscous
flowoccurs.

For molecular weights below A/,, both the monomeric friction factor
and Ty are less than the asymptotic values found at higher molecular weight.
The decrease in friction factor shifts the modulus curve to the left, as shown
in Figure 5A by the dashed line, even though the samples are being com-
pared at equivalent temperatures (i.e., Tx + A7). The 7" effect means
that this curve would be shifted dill farther toward shorter times if the
results for the high- and very low- nioUcular-weight samples were compared
at the same temperature.

B. Effect of Cross-Linking

A smdl number of chemical cross-links act about the same as entangle-
ments, but the cross-links do not relax or become ineffective at high tem-
peratures. Thus cross-linked elastomers show rubberlike elasticity and re-
coverable deformation even at high temperatures and for long times after
being stretched or deformed. The modulus in the rubbery region increases
with the number of cross-link points or, equivalently, as the molecular -
weight between cross-links M,. decreases. This behavior is illustrated in
Figure 6. The modulus actually increases dightly with temperature as long
as the kinetic theory of rubber elasticity is vaid (see Chapter 3).

In addition to raising the rubbery modulus, cross-linking produces three
other effects (72-74). First, when the cross-link density becomes fairly
high, the glass transition temperature is increased, so the drop in the
modulus becomes shifted to higher temperatures or longer times. Second,
the transition region is broadened, with the modulus dropping at a lower
rate and plateauing at a higher level. At least part of the broadening of
the transition region is due to the heterogeneity in the molecular weight
between cross-links (73). Widdly spaced cross-links produce only dight
restrictions on molecular motions, so the 7, tends to be close to that of
the uncross-linkcd polymer. As the cross-link density is increased, molec-
ular motion becomes more restricted, and the Ty of the cross-linked poly-
mMer rises. :

The find reason for the broadening is that the nature of the polymer
backbone has changed and the highly cross-linked system has become a
copolymer. A homopolymer consisting of just the cross-link structure would
have a higher £, value and go through its transition a a much higher
temperature, and the results observed reflect this. Cross-linking has rather
litle effect on the magnitude of the modulus in the glassy state (i.e., a
vay short times or at temperatures below 7). Both increases and decreases
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Figure 6 LEffcct of cross-linking on (A) modulus-time and (B) modulus-
ternperature curves of amorphous uncross-linked polymers. The numbers on the
curves are approximate values of M_. The value 30,000 refers to an uncross-linked
polymer with a molecular weigh! of roughly 30,000 between entanglement points.
Modulus is given in dyn/cm?.

has been observed. If perfect network structures could be made, large
increases in modulus should theoretically occur at extremely high degrees
of cross-linking, such as in diamonds.

C. Effect of Crystallinity

Crystallinity in a pblymer modifies the modulus curve of an amorphous
polymer above its Tk point by at least two mechanisms (75,76). First, the
crystallites act as cross-links by tying segments of many molecules together.
Second, the crystallites have very high moduli compared to the rubbery
amorphous parts, so they behave as rigid fillers in an amorphous matrix.
Hard particles will diffen a soft matrix far more than they will a hard
matrix. Since a glass has a modulus nearly as great as that of an organic
crystal (77), Crydallinity has only a dight effect on the modulus below Ty,
while the diffening effect is most pronounced in the normally rubbery
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region of response. Here the modulus increases very rapidly with the degree
of Crystalinity. The effects of Crystdlinity are illustrated in Figure 7. The
cross-linking and filler effects of the crystallites last up to the melting point.
The melting point will generally increase some as the degree of Crystalinity
increases. Above the melting pomt behavior typica of an amorphous
polymer is found.

Between Ty and the melting point, the modulus—temperature curves
often have an appreciable negative slope. This gradua change in modulus
is due partly to some melting of small or imperfect crystalites below the
melting point, which reduces both the rigid filler effect and the cross-linking
effect, and due partly to a loosening of the structure as a result of thermal
expansion.

The €effect of Crystalinity on the time-scale plot is rather complex and
not readily sketched. If the crystallites were thermally stable, the isothermal
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Figure 7 Effect of crystallinity on the modulus-temperature curve. The numbers
on the curves are rough approximations of the percent of crystallinity. Modulus is
given mn dyn/em”,

curves tor varying percent cryst;illinities would resemble those for varying
cross-link density (Figure 6B). Raising the temperature would merely shift
the curves to the left, to shorter times. Since the crystallites do melt,
however, there is »n additional drop in the plateau modulus at each tem-
perature, until the crystallites no longer serve as cross-links and the mod-
ulus drops rapidly toward that of the amorphous state.

Crystallinity often has little if any effect on 7, but with some polymers
crystallized under certain conditions, the 7 value is raised (78,79). The
increase appears to be caused either by polymer being restricted to short
amorphous segments between two crystallites or by stresses put on the
amorphous chain sequences as a result of the crystallization process. In
either case the mobility is restricted, so higher temperatures are required
to restore it. Thus quench cooling tends to increase 7, whereas annealing
reduces Ty back to'the value typica of the amorphous polymer.
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The morphology of the crystallite structures present is also important
in determining the mechanical properties.

D. Copolymerization and Plasticization

Plasticizer and Copolymerization change the glass transition temperature
as discussed in Chapter 1. Plagticixers have little effect on £,,. Copoly-
merization can change £, athough less strongly than 7. As a result, the
basic modulus-temperature and modul us-time curves are shifted as shown
in Figure 8 for different compositions. The ghift in the modulus-temper-
ature curve is essentially the same as the shift in Tx. The ghift in the
modulus-time curve includes this plus the effect of any change in £y,

Copolymers and plasticized materials often show another effect—a
broadening of the transition region with a decrease in the dope of the
modulus curve in the region of the inflection point. This effect is most
pronounced with plasticizer which are poor solvents for the polymer (80-
84). Heterogeneous copolymers, in which there is a change in overall
chemica composition in going from one molecule to another, also have
broad transition regions (85-87). "This heterogeneity can result from the
fact that in most copolymerizations the first polymer formed terrds to be
richer in one component than the other, while during the last part of the
polymerization reaction the molecules become richer in the other co-
monomer. This results in a mixture with a distribution of glass transitions
and friction factors. Polymer mixtures of different chemica composition
tend to be insoluble in each other, and this tendency for phase separation
is another cause of the broadening of the transition region (87). If the
molecules of different composition are completely soluble in one another
and if the mixture is homogeneous in the sense of being thoroughly mixed,
there is little if any broadening of the transition (88).

The magnitude of the rubbery modulus does not depend, strictly speak-
ing, on My but on the number concentration of chains between entangle-
ment points, vi(v,, = \>RTIM,). Thus plasticizers can lower the plateau
modulus by a simple dilution effect. Usually, the plasticizer content is too
low to have any significant effect. However, the plateau can be decreased
markedly within a polymer family (e.g., methyl acrylates) by copolymer-
izing a monomer with long side-chain branches (e.g., dodecyl methacry-
late). The decrease occurs because the degree of polymerization between
avalable cross-links/>,( = AVmotiomer molecular weight My)) isinsensitive
to structure (62) and nearly constant. Hence increasing M, raises the -
fedive M, Significantly, with a corresponding decrease in the rubbery plateau.

Plagticizers and Copolymerization also shift the glass transition responses
of the amorphous phase of crystalline polymers. In addition, the degree
of Crygdlinity and melting point are lowered. The resulting effects on the
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Figure 8 Lffect of plasticization or copolymerization on (A) the modulus-time
and (B) modulus-temperature curves. The curves correspond to different plasti-
cizer concentrations or to different copolymer compositions. Curve B is unplasti-
cized homopolymer; A is either 4 second homopolymer or plasticized B.

modul us-temperature curves are as expected from the previous discussion.
There are aso other subtle effects, which are discussed in detail in later
chapters. ‘

E. Block and Graft Polymers and Polyblends

In a few cases mixtures of two polymers are soluble in one another, where
there is a close match of the solubility parameters or strong polymer-
polymer interactions. They form single-phase systems. Two examples of
compatible blends are polystyrene with poly(2,6-dimethyl phenylene oxide)
(89) and poly(methyl methacrylate) with highly chlorinated (>50%) poly-
ethylene (90). The mechanical properties of compatible blends resemble
those of random copolymers, having a single T value and modulus tran-
sition zone. Tk varies rather regularly with composition, often following
the simple rule of mixtures. The rubbery plateau and steady-flow viscosity
are less apt to vary regularly.

Generally, however, mixtures of two polymers arc insoluble in one
another and form two-phase systems (91-104). Block and graft polymers, in
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which there are long sequences of each homopolymer, dso are two-phase
sysems (105-114). Thus in block and graft polymers there is the unique
dtuation in which a single molecule can be in two phases simultaneoudly.
Incompatibility and phase separation can be difficult to determine. Most
often the inhomogeneity renders the product turbid or at least milky.
However, systems with closely matching indices of refraction or with a
very small domain size can be quite transparent. While differential scanning
calorimetry, density, dilatometric 7%, dielectric, and x-ray measurements
have dl been applied to determining compatibility, modulus measurements
and scanning electron microscopy (iacases where one phase can be stained)
have proven to be the most sensitive to phase separation (115). In two-
phase systems where the phases are well separated, there are two glass
trangitions instead of the usua one. Each transition is characteristic of one
of the homopolymers. The resulting modul us-temperature curve has two
steep drops, as shown in Figure 9. The value of the modulus in the plateau
region between the two glass transitions depends on the ratio of the com-
ponents and on which phase tends to be the continuous phase and which
is the dispersed phase, and on the morphology of the discontinuous phase
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Figure 9 Modulusmtemperatur\:lcurves of two-phase polyblends and block poly-
mers of widely different T, values. The numbers on the curves are rough estimates
of the volume fraction of the component with the lower T, value, which is shown
both as an amorphous and as a cross-linked material (dashed line). Modulus is
given in dyn/cm?.

(104,116,117). A corresponding isothermal log E{t) versus log t plot would
look very similar if it could be measured over the full glass-to-flow region.
However, the width of the intermediate plateau would decrease strongly
with increasing temperature.

PROBLEMS

1. What is the shear modulus of a polymer specimen as measured in
a torsion pendulum with a period of 1.0 s if the specimen is 4 in.
long, 0.40 in. wide, and 0.030 in. thick? The moment of inertia of
the system is 5000 g-cm?.

2. Whatis the Young's modulus of the polymer in Problem 1 if Pois-
son’s ratio is ().35?



Elastic Moduli 57

10.

11.

12.

A nylon fiber has uniaxiai orientation in which the polymer chains
are parallel to the fiber axis. Is £, greater than E;? Is G, greater
than G, ;7 Why?

A beam of polystyrene 1s supported at each end. A load of 10 b
1s applied to the middle. FHow much will the beam deflect if it is
1 ft long with a square crosg section 1 in. to the side? The Young's
modulus is 3.5 x 10" dyn/cm?.

If the beam of Problem 4 were a cantilever beam with the load on
the end, what would the deflection ‘of the end be?

A bar of polystyrenc with a Young's modulus of 3.5 x 10" dyn/
em? is dropped on the floor. As it rebounds into the air, it vibrates
as a free—free beam. What is the frequency of the sound it emits
if it is 8 in. long and has a diameter of 0.5 in?

A sinusoidal input, € = €, sin wt [see equation (10)], can also be
written as € = €', Show that o/e, called M*, then leads to M*
= M' + iM". Show that for a compliance, the sign is reversed
(c.g., m shear, J* = J' - iJ").

Although mixtures of most polymers form two-phase systems with
two glass transitions, some mixtures do form one phase with a
single T,. An example of a single-phase mixture is poly(vinyl ace-
tate) (7, = 35°C) and poly(methyl acrylate) (T, = 14°C). What
is the approximate 7T, value of a mixture containing equal volumes
of the two polymers?

The modulus of a crystalline polymer changes from 1.3 x 10%
dyn/cm?® below T, to 10° dyn/cm? just above the glass transition
region. What is the approximate degree of crystallinity? On raising
the temperature to the region of the melting point, the modulus
drops to 10% dyn/em2. What is the degree of crystallinity at this
higher temperature?

Give several possible ways of telling the difference between an
uncross-linked polymer of very high molecular weight and one that
has a very low degree of cross-linking.

Using only mechanical tests, how can a crystalline polymer be
distinguished from a cross-linked one?

A glass fiber mat in which the fibers appear to be randomly oriented
is impregnated with a thermosetting resin and cured. Strips are cut
from the sheet in different directions, and their Young’s modulus
is measured. The Young’s moduli are not the same in different
directions. If the differences are much greater than the expected
experimental errors, what is the most probable cause of the dif-
ference in moduli?
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A uniaxial composite consists of aligned glass fibers in a polymer
matrix. If the modulus of the fibers is 20 times that of the polymer,
is the longitudinal Young's modulus greater or less than the trans-
verse Young's modulus? Is G, greater than Gpp?

A beam with a square cross section of thickness D is to be compared
with a circular beam of diameter D. If the two beams of the same
length are supported on their ends and are center loaded with a
weight W, which beam will deflect the most? What is the ratio of
their center deflections if both beams have the same modulus?
Two beams of the same material are clamped at one end to form
a cantilever beam. One beam has a square cross section of thickness
D, and the other beam has a circular cross section of diameter D.
The beams are set in vibration by a tap near the free end. If the
length of the beams is the same, which beam will have the higher
frequency of vibration? What is the ratio of their frequencies?
The Young's modulus of a polymer is to be measured by the fre-
quency of vibration of a cantilever beam. The beam is 4 in. long,
0.5 in. wide, and 0.025 in. thick. The density of the polymer is
1.0. If the resonance frequency is 20 Hz, what is the Young’s
modulus?
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Creep and Stress Relaxation

[. INTRODUCTION

Creep and stress-relaxation tests measure the dimensional stability of a
material, and because the tests can be of long duration, such tests are of
great practical importance. Creep measurements, especially, are of interest
to engineers in any application where the polymer must sustain loads for
long periods. Creep and stress relaxation are also of major importance to
anyone interested in the theory of or molecular origins of Viscoeagticity.

For elastomeric materials, extremely simple equipment can be used to
measure creep or stress relaxation. For rigid materials the measurements
become more difficult, and more elaborate equipment is generally re-
quired. In the creep of rigid materials, the difficulty arises from the ne-
cessty to measure accurately very smal deformations and deformation
rates. In the case of the stress relaxation of rigid polymers, the problem
isto measure the stress and small strains accurately when the specimen is
comparable in rigidity to that of the apparatus, in which case smal defor-
mations of the apparatus or dippage of the specimen in its grips can in-
troduce very large errors. A great many instruments have been described
in the literature. Instruments and techniques, together with many refer-
ences, have been described in detail by Ferry (1) and Nielsen (2) and are
not reviewed here. However, most modern testing laboratories have com-
mercid "universal" testing machines that can make such measurements,

63
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especialy if electronic or optical strain gages are used properly to measure
the longitudinal and lateral strain. Unfortunately, creep measurements
tend to be made at constant force or load and not constant stress (whether
usng simple or complex test equipment). One should try to ensure that
the proper data are being supplied for and used in analyses.

If the deformations and stresses are small and the time dependence is
weak, creep ami stress-relaxation tests are essentially the inverse of one
another. Otherwise data from one kind of test can be used to calculate the
other by farly complex methods to be described later. However, to a first
approximation the intcrconversion from creep to stress relaxation, or vice
versa, is given by a simple equation (3):

(1) Lo
( LT )‘.,.ﬂ.,, B ("“)),ﬂ;,x “)

where €, is the initial strain in a creep test and €(() is the creep strain after
timel. <pistheinitial stress measured at the beginning of a stress-relaxation
test, and cr(/) is the stress aftér time /. This equation works better in regions
of small time dependence (i.e., in the glassy region, in the rubbery region,
or with crystalline materials). The creep response lies at longer times than
does inverse stress relaxation. This small difference is accounted for in the
more complex calculation methods, but should be kept in mind if equation
(I is used. _ :
When the stresses and strains become large and the stress-strain curve
becomes nonlinear, smple descriptions of the response and interconversions
between creep and relaxation become increasingly less valid. Published dis-
cussions of nonlinear Viscodadticity in melts, elastomers, and glassy solids dl
treat or emphasize® different aspects ol nonlineaiity. The problem is il under
active investigation, with the greatest progress having been made with das
tomers and the least progress with glassy solids. Of course, the response of
two-phase systems is, by the same token, even less well understood. Despite
this, such materials can be described to a ussful extern by straightforward
mechanics. “The problem that can arise, however, is in trying to describe (1)
how the materials will react to a complex stress or strain fied if only knowledge
of the response in simple tension or simple shear is available, and (2) what
the long-time response will be. In the following section the discusson will
rely on understanding gairted at the linear viscodlagtic level. The degree to
which it can be extrapolated outside this region must be kept in mind.

. MODELS

Very simple models can illustrate the general creep and stress-relaxation
behavior of polymers except that the time scales are greatly collapsed in
the models compared to actual materials. In the models most of the in-
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teresting changes occur in about one decade of time, whereas polymers
show (he same total changes only over many decades of time. Nevertheless
such models provide a ussful mnemonic device for describing or recalling
the interplay between viscous and elastic response and for the underlying
simple differential equations that describe stress-strain-time relations in
linear Viscodladticity. At the same time, they provide a useful means of
visudizing responses.

A simple model for stress relaxation is a Maxwell unit, which consists
of a Hookean spring and a Newtonian dashpot in series as shown in the
insert in Figure 1." The modulus or stiffness of the spring is E, and the
viscogity of the dashpot is r\. In a stress-relaxation experiment the model
is given a definite strain e while the stress <r is measured as a function of
time. In the strained model, the change of the elongation of the spring is
compensated by an equal change in the dashpot, but the net rate of change
is zero; that is.

de _ldo o
dt  Edt  y

=0 (2)

since € = a/F for the spring and o/ = de/dt for the dashpot. The solution
of this equation of motion is

43 .
—_ = Fim o g (_;)
o
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Houe 1 Stress rdaxation of a Maxwel modd (linear scdes), T = 1 s
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where

T‘ .
I 4)

The quantity T is caled the relaxation time.

Equation (3) is plotted with two different time scales in Figures 1 and
2 for values somewhat typical of an elastomer. All the initial deformation
takes place in the spring; at a later time the dashpot starts to relax and
allows the spring to contract. Most of the relaxation takes place within one
decade of time on both sides of the relaxation time, but this is shown clearly
only in Figure 2. On the logarithmic time scale, the stress-relaxation curve
has a maximum slope at the time / = T and the stress ratio o/, is 0.3679
ore '. The dtress relaxation may aso be given in terms of a stress-relaxation
modulus E(t):

T=

o) oy
= — ¢
€

E() === =—Z¢" {3)

"The model of Figure | cannot describe creep behavior at all. This may be
illustrated by the four-element model shown in Figure 3. When a constant
load is applied, the initial elongation comes from the single spring with the
modulus E,. Later elongation comes from the spring E, and dashpot T]a,
in paralel, and from the dashpot with the viscosity r\,. The total elongation

g
.

STRESS RATIO iz,
£ £
T

[
L]

o b A. L
L1y ot 1]

TIME (SEC)

Fgure 2 Stress relaxation of a Maxwdl modd on a logarithmic time scale. Modd
is the same &s Figure 1
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I

o
Figure 3 Four-clement model for creep.

of the model is the sum of the individual elongations of the three parts.
Thus

oy Ty _u ‘ g
€= = +— {1l — e} + —¢ 6
E, Ez( ) n (6)

where oy is the applied stress and the retardation time T is defined by

=
= @

In a recovery test after dl the load is removed at time /,, the creep is al
recoverable except for the flow that occurred in the dashpot with viscosity
M-

The instant the load is removed there is a reduction in the elongation

of the model equal to aJE,. The equation for subsequent creep recovery
is

e Ty
€ = g 1-mir 4 I ol
2 " (8)
where
T4
&= (1 — e 9

£,
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Figure 4 illustrates the creep and recovery of a four-element model with
the following constants:

o, = 10" dyn/em? E,
5x WP E, = 1Y dyn/em?
S x 1P T =3§s

5 x 10° dyn/cm?

It
i

n:
s

fl

"The creep experiment lasted 1K) s and then the load was removed for the
recovery experiment.

Figures 5 and h show how the shape of the creep curve is modified by
changes in the constants of the model. ‘The values of the constants are
given in Table I. Curve | is the same as shown in Figure 4, curve Il shows
onlv a smal amount of viscous creep, and in curve 111, viscous flow is a
prominent part of the total creep. The same data were used in Figures 5
and 6, but notice the dramatic, change in the shapes of the curves when a
linear time scale is replaced by a logarithmic time scale. In the model, most
of the recoverable creep occurs"Within about one decade of the retardation
time.

In Chapter 4, the response of these models to dynamic (i.e., sinusoidal)
loads or strains is illustrated. In Chapter 5, the stress-strain response in
constant rate experiments is described. Models with nonlinear springs and
nonlinear dashpots (i.e., stress not proportional to strain or to strain rate)

L)

strain

0.5 -

o4 -

o2

&

| i,

T T T T T ¥ ¥ u T T
D %0 20 M 40 50 60 70 80 90 100 G 120 130 140 50 160 +70 18D 19D 200

[L.1]

titre (sec)

Fgure 4 Creep and creep recovery of a four-clement model.
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]
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TIME (SEC)

Fgure 5 Creepi" of a four-dement modd with the constants given in Table 1~
Linear time scde.

in which the nonlinearity is taken to be associated with specific mechanisms
such as springs with rubberlike elagticity have also been employed (4).

Ill. DISTRIBUTION OF RELAXATION AND
RETARDATION TIMES

In Section 11, models were discussed that had only a single relaxation or
retardation time. Actual polymers have a large number of relaxation or
retardation times distributed over many decades of time. E(t) is then the
sum of individual contributions, so equation (5) becomes

£ = iu e (1)

Models purporting to describe reai material behavior with only a small
number of values of T will provide illustrative calculations of the response
only over a small time or temperature region. Such illustrative results can
be extremely important in providing guidance as to potential trends in
response. However, the models can never be used for reliable estimates
of response under real use conditions over wide time or temperature ranges.
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L)

CREEP STRAIN ¢

wlo——
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Figure 6 Creep of a four-element model with the same constants as in Figure 5
but with a logarithmic time scale.

Table 1 Constants for Four-Element Creep Model

Curve E i E, w; o
1 5= 10¢ 5 x 1n 1 5% e ¥

u " 5 x 10" e 5 x {1
I S x ¢ 5= 10w ¢ 5ox I L1

For rea polymers with large N, the summation passes over to an integral
and E, is replaced by a continuous set of contributions to the modulus
associated with each time increment between T and + + ot (i.e., Fldr):

N *
E(n = 2 Ee ' — J; Flrye " dr (11

F(i) is the underlying modulus spectrum for that system. As noted above,
since the time scale of relaxation is so broad, results are best depicted on
a logarithmic time scale. To do this, one needs the contribution to the
modulus associated with or'lying in the time interval between In T and In
T 4- d In T, this incremental contribution to the modulus is designated as
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Hdln¢, so
E() = I Hlntle “dint (12)

The continuous function H(\n T) [often. simply given the symbol H(r) as
in this chapter) is the continuous relaxation spectrum. Although called, by
long-standing custom, a spectrum of relaxation times, it can be seen that
Hisin reality a distribution of modulus contributions, or a modulus spec-
trum, over the real time scale from O to <« or over the logarithmic time
scale from —o to +,

The distribution of relaxation times H(r) can be estimated from a stress
relaxation or E;(() curve plotted on'a log t scale by

—d{E£.0)] = -1 4iE(1) ' (13)
dint 2.303 d ltog,u!

A distribution obtained by the use of equation (13) isonly afirst approxima-
tion to the real distribution. The corresponding distribution of retardation
times is designated as L(T). It may be estimated from the slope of a com-
pliance curve D(() or J(t), for tensile or shear creep, respectively, plotted
on a logarithmic time scale according to the equation (for shear creep).

Ldim) 1 di)
LY = ne = 2303 dtogyyt (14)

H{t) =

If there is any viscous flow component to the creep, it should be removed
before making the calculation, so

L1 dUe - )
L = 3503 ™ dlogr (13)

For tensile creep, TJ would be the tensile viscosity. When the viscosity is
high (e.g., when working at relatively low temperatures or with very high-
molecular-weight polymers) it can be difficult to determine tl-x\ accurately,
SO creep recovery measurements are made. Here the load is released after
agiven creep time and the strain is followed as the specimen shrinks back
toward its new equilibrium dimensions.

Equations (13) and (14) can be used to obtain quick estimates and to
visudize the response of a polymer system under investigation. In any case,
unless D{t) and E(t) are varying very dowly on a log time scale, the dis-
tributions are valid only in the time range from the minimum time of
observation, plus one decade, to the maximum time™of observation, less
one decade. Many more accurate and complex methods of estimating L(r)
and //(T) have been proposed. These methods have been summarized by
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various authors, including Leaderman (5), Ferry (1), and Tobolsky (6),
and presented more recently in great detail by Tschoegl (7).

To get accurate distributions of relaxation or retardation times, the
expetimental data should cover about 10 or 15 decades of time. It is im-
possible to get experimental data covering such a great range of times at
one temperature from a single type of experiment, such as creep or stress
relaxation-t Therefore, master curves (discussed later) have been developed
that cover the required time scales by combining data at different temperatures
through the use of time-temperature superposition principles.

Distributions of relaxation or retardation times are useful and important
both theoretically and practicgly, because // can be calculated from /.. (and
vice versa) and because froni ‘such distributions other types of viscoelastic
properties can be calculated. For example, dynamic modulus data can be
calculated from experimentally measured stress relaxation data via the
resulting // spectrum, or H can be inverted to L, from which creep can
be calculated. Alternatively, rather than going from one measured property
function to the spectrum to a desired property function [e.g., E(t) — //{In
1) — G"(w)], Schwarzl has presented a series of easy-to-use approximate
equations, including estimated error limits, for converting from one prop-
erty function to another (11).

From the practical standpoint of trying to solve stress analysis problems,
however, verv little use has been- made of H(7) and L{7), eyen when they
are known. The reason is that at each step in time, integration over the
\;VTO)'E range of T has to be carried out. It is easier, instead, to use £{t) or
W)

The exponential series in equation (10), called a Prony series, is an
attractive explicit representation of /:(/), extremely useful in numerical
calculation. However, athough it can describe E{t) with great fidelity and
accuracy if Ei. 7,. and N are known, a known set of E{f) data cannot be
inverted analytically to determine the coefficients. Approximate numerical
techniques called colocation methods (12) have been developed which,
using preselected T values, will fit the experimental data very well for data -
that vary dowly (i.e., near the rubbery or glassy region). However, they
are unreliable in fitting data though a full transition region. Many people
have written computer programs for these and related computations/trans-
formations, but few appear to be commercialy available.

The methods described above give continuous distributions of relaxation
times. However, the molecular theories of Viscodasticity of polymers as

tCombinations of experiments using dynamic testing such as described in Chapter 4 and one
of the transient fest modes of creep or stress relaxation have been used in o few cases to
obtain wide time coverage al one temperature {8~ 10).
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developed by Rouse (13), Zimm (14), Bueche (15,16), the Doi-Edwards
(17-19) schoal, the Bird-Curtiss- Armstrong (20) school, and others (1,21)
give a discrete spectrum of relaxation times (although over much of the
range the spectral lines merge into a continuous spectrum). 7; of eguation
(10) is now completely specified. A typica equation from these theories

a temperatures above 7 is that of the modified Rouse theory for an
uncross-linked polymer (21)

T T T, R SIS p= 1,23 ...,N5 (16)

The longest relaxation time. w,, corresponds to p = 1. The important
characteristics of the polymer are its steady-state viscosity M at zero rate
of shear, molecular weight A/, and its density p at temperature 7', R is the
gas constant, and N is the number of statistical segments in the polymer
chain. For vinyl polymers N contains about 10 to 20 monomer units. This
equation holds only for the longer relaxation times (i.e., in the terminal
zone). In this region the stress-relaxation curve is now given by a sum of
exponential terms just as in equation (10), but the number of terms in the
am and the relationship between the T'S of each term is specified com-
pletely. Thus .

o = 3 N{: o1 S h_”:' »irn

Ty N [ ¢ N.P):,I ¢ (17)
Here 7, is dill a ratio of a viscosity to a modulus, as in the spring-dashpot
modd of Figure 1, but each sprint! has the same (shear) modulus, pRT/M
and the steady-flow viscosity T] of equation (16) is the sum of the viscosities
of the individual submolecules. Molecular theories are discussed more fully
in Section X.

IV. SUPERPOSITION PRINCIPLES

There are two superposition principles that are important in the theory of
Viscodadticity. The firgt of these is the Boltzmann superposition principle,
which describes the response of a materia to different loading histories
(22). The second is the time-temperature superposition principle or WLF
(Williams, Landel, and Ferry) equation, which describes the effect of tem-
perature on the time scale of the response.

The Boltzmann superposition principle states that the response of a
materid to a given load is independent of the response of the material to
ay load that is already on the material. Another consequence of this
principle is that the deformation of a specimen is directly proportional to
the applied stress when dl deformations are compared at equivalent.times
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(i.e., this is the region of linear response referred to earlier). The effect
of different loads is additive.

For the case of creep, if there are several stresses @o, @1 Oz« <« i
applied at times (. ¢, f;, . . ., &, the Boltzmann superposition principle
may be expressed by

€(t) = J(noy + J(t — t)oy ~ag) + - - - + I - t)a;, - 0,_) (18)

The creep e(r) at time / depends on the compliance function J{¢), which is

a characteristic of the polymer at a given temperature, and on the initial
stress Fa. At a later time ¢,.sthe load is changed to a vaue of o,. At il
later times 1. the load may be increased or decreased to @;, but for each
additional stress, a different time scale has to be employed in J (i.e., t —
1), the time over which that stress was applied. Furthermore, while €(*)
for any load is given by the product J{f)o the stress of concern is the

incremental added stress or & — - - o
Figure 7 illustrates the Boltzmann superposition principle for a polymer

that obeys a common type of behavior given by the Nutting equation
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Figure 7 Creep of a materid that obeys the Boltzmann superpostion principle.
The load is doubled after 400 s.
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(23,24):
elr) = Kt . (19)

where K and n arc constants that depend on the temperature. The specia
caz illustrated in Figure 7 is given by

e(r) = 10 ‘aro (20)

where o has the units of pounds per square inch and ¢ is in seconds.
Doubling the load after 400 s gives a total creep that is the superposition
of the original creep curve shifted by 400 s on top of the extension of the
origind curve.

A similar superposition holds for stress-relaxation experiments in which
the strain is changed during the course of the experiments. "The BoIt/mann
superposition principle for stress relaxation is

o(ty = E{Ney + E(t — )€, ~ &) + -+ (21)

The initial strain g, is changed a time ¢, 1 ¢,, and the stress is the sum of
tha induced by the separate strain increments.

Time-temperature superposition has been used for a long time; early
work has been reviewed by Leaderman (22). Creep curves made at different.
temperatures were found to be superposable by horizontal shifts along a
logarithmic time scale to give a single creep curve covering a very large
range of times. Such curves made by superposition, using some temperature
as a reference temperature, cover times outside the range easily accessible
by practical experiments. The curve made by superposition is called a
madter curve. Subsequent advances in the time-temperature superposition
principle were made by Ferry, who made the process explicit (25); by
Tobolsky (6,26); and by Williams, Landel, and Ferry (1,27), who showed
thet the reference temperature is not arbitrary but is related to Ty.

Ferry showed that superposition required that there be no change in
the relaxation/retardation mechanism with temperature and that the T val-
ues for dl mechanisms must change identically with temperature. Defining
the ratio of any relaxation time Tat some temperature Tto that at reference
temperature T, as ar,

T;

P (22)

Tio

S0 the quantity t/7, in equation (10) becomes

bl @)
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Thus (he time scale / at /', divided by &, is equivalent to the scale at '/',.
On a log scale, log a, is thus the horizontal shift factor required for su-
perposition. An important consequence of equation (22) is that a, or log
(ii is the same for a given polymer (or solution) no matter what experiment
is being employed. Thai is. creep and stress-relaxation curves are shifted
bv the same amount.

I-or uncross-linkcd polymers, since T = w/(s

-1
The

Wt (24)
and (i, can be evaluated independently, from the viscosity. A more exact
relation is

1 T
e (25)

M ;I’ ’
where p and p,, are the densities at temperature T and the reference tem-
perature /,,, respectively. For plasticized polymers or solutions, the density
ratio is replaced by the (volumetric) concentration ratio. At Tk the viscosity
is generally on the order of 10" P.

The method oi” relating the horizontal shifts along the log time scale to
temperature changes as developed by Williams, Landel, and Ferry from
equation (24) is known as the WI.F method. The amount of horizontal
slut! of (he log time scale is givvn by log a,. If the glass transition tem-
perature is chosen as the reference temperature, the temperature depend-
ence ni the shift lactoi lor most amorphous polymers is
- I A B 1T T )

t

" T . 26
o d R S Wik TRV S O (26)

3

or. less accurately, using the average value of Au from many polymers, of
4S x H " K \

~LHT -T)
log a, = o T T (27)

K

Aw is the difference between the liquid and glassy volumetric expansion
coefficients and the temperatures are in kelvin. "The WLF equation holds
between 1], or /,, f 10 K and abftut 100 K above 7*. Above this temper-
ature, for thermally stable polymers, Berry and Fox (28) have shown that
a ussful extension of the WLF equation is the addition of an Arrhenius
term with a low activation energy.

An important aspect of the WLF development is that if a temperature
other than Tk is chosen as the reference temperature, an equation with the
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same form as equation (26) is obtained, but with different numerical coef-
ficients. These change in a defined manner, however:

oo I8
-] (vl,: *_ ?-" A ,!x
=+ T, T, {28)

The temperature-time superposition principle is illustrated in Figure 8
by a hypothetical polymer with a T value of ()°C for the case of stress
relaxation. First, experimental stress relaxation curves are obtained at a
series of temperatures over as great a time period as is convenient, say
from 1 min to 10 min (1 week) in (he example in Figure 8. In making the
master curve from the experimental data, the stress relaxation modulus
E(#) must firs be multiplied by a small temperature correction factor.f(T).
Above T, this correction factor is T,./¥, where T, is the chosen reference

'ol

108

Er (t}= 5 (T} (Dyn/cm,)

10

o ey

0t o2 * ulf _wt 5‘ lc;'_ ro"'_ i o™
TIME (min)or 1/0,

Figure 8 WLF time-temperature superposition applied to stress-relaxation data
obtained at several temperatures to obtain a master curve. The master curve, made
by shifting the data along the horizontal axis by amounts shown in the insert for
fr, is shown with circles on a line.



78 Chapter 3

temperature: temperatures are in kelvin. This correction arises from the
kinetic theory of rubber elasticity, which we discuss later. Below ¥, the
WI F theory is not applicable, so a different temperature correction should
be used since the modulus decreases with temperature below 7 but in-
creases with temperatures above 7,- Below 7. it is often assumed that
ftIy = 1. but McCruin et ai. (29.30) and Rusch (31) have suin-ested a
more realistic, but tili small correction. Next, the corrected moduli curves
are plotted as the solid curves in Figure 8. The curve at some temperature
is chosen as the reference T, in the example.!' The curves are then shifted
one by one aong the lop time scale until they superpose. Curves at tem-
peratures above T are shifted to the right, and those below 7, are shifted
to the left. “The shift is ieg(l/as}, Usually, the curves do not cover a large
enough ogt 07} range to permit superposition on the reference curve. In
this case they are shifted to superpose with their nearest neighbor. - The
magnitude of such a shift is called & log(1/a,): then log &, = X" & log(l/
«,;}. "The complete master curve is shown by the line with circles in Figure
8; it covers 18 decades of time, whereas the original data covered only (our
decades. For most amorphous polymers above ' the shift factor is given
ijuile accurately by the WI.F function shown in the insert and in Table 2.
"Thus the stress relaxation curve a 5'C should be shifted 1427 decades in
time to the right (longer times) to superpose properly with the curve at

"C.. The master curve in this example has a.prominent plateau near 10
dyn/em?: this long plateau is characteristic of very high-molecular-wcight

Table 2 WLF Shift Factors

r-T, Shift Tactor. log,a,
If] ]
2 —01,6003
5 - 14272

i - 205

20 ~ 4 5836

M ~ 6767

S0 ~R.21H6

RO - 10251

106 1173

*In practice, it is best 1o chonse o reference temperature a1 the midpoint of the data and
superpise the data to this temperature. A particubarly apt reference temperature is T, + 30°,
which has been referred to as a standard reference temperature, 7, (27). Conversion from
any reference temperature 10 T, can then be made via equativns such as equation (28).
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polymers and is due to chain entanglements, which act as temporary cross-
links (sec Figure 2.5). Since time and temperature arc equivalent according
to the superposition principle, the reduced time scale at a fixed tempera-
ture, tla,, can be replaced by a temperature scale at a fixed time. The
equivalent temperature scale is shown above the reduced time scale on the
abscissa of Figure 8 for a reference ume of I min. Any different reference
time has a different equivalent temperature scale.

Master curves are importént since they give directly the response to be
expected at other times at that temperature. In addition, such curves are
required to calculate the distribution of relaxation times as discussed ear-
lier. Master curves can be made from stress relaxation data, dynamic me-
chanical data, or creep data (and, though less straightforwardly, from
constant-strain-rate data and from dielectric response data). Figure 9 shows
master curves for the compliance of poly(n.v-isoprene) of different molec-
ular weights. The master curves were constructed from creep curves such
as those shown in Figure 10 (32). The reference temperature 7', for the

w1s B 2323 3 37 e
A

L L 1 ! 1 | ]
-6 -4 -2 ¢ 2 4 B 8
LOG Vta; (sec}

Figure 9 Master curves for creep compliance of polyisoprene of various molecular
weights at a reference temperature of - 3()°C:

Woeight-average

Curve molccular weight
I-2t .76 x O
1-23 .03 x -t
I-25 1.59 x 1P
31 395 x W
[-32 6,20 x P
I-34 112 x ¥

{From Ref. 32.)
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Figure 10 Creep compliance of polyisoprcne at various temperatures. Data are
for a fraction with a molecular weight of 1.2 x 10" (Prom Ref. 32.)

master curves was ~ J°C, which is about 43°C above 7. The shift factors
u; follow the WLF theory, but since the reference temperature was not
T, equation (27) does not hold. The WLF equation for this case is

_'8.2{’(?‘ - Tu)

log @, = N5+ 7T -7,

(29)

Master curves can often be made for crystalline as well as for amorphous
polymers (33-38). The horizontal shift factor, however, will generally not
correspond to a WLF ghift factor. In addition, a vertical shift factor is
generally required which, has a strong dependence on temperature (36-
38). At least part of the vertical shift factor results from the change in
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modulus due to the change in degree of Crydalinity with temperature.
Aging and heat treatments may aso affect the shift factors. For these
reasons, the vertical shift factors are largely empirical, with very little
theoretical validity, and whenever they are required the resulting master
curves cannot be used for reliable extrapolation to estimate the response
vary far from the experimental observation "window." A few references
to papers discussing master curves for the creep and stress relaxation be-

havior of a number of polymers arc given in ‘Table ¥ (39--53}).

Table 3 Master Curves fur Various Polymers

Refs. Test Polymers
39 Creep and stress Pidysiyrene, poly(methyl methacrylate),
relaxation pely{methyl acrylate)
44 Creep Polystyrenc
32 Creep Paly(cis-isoprene)
i Stress relaxation Styrence—butadiene robber
42 Creep, stress Nylan 66
relaxation, dynamic
43 Creep Nylon 6
44 Retaxation Poty(methyl methacrylate)
45 Relaxation Poly{methyl methacrylite) and poly{methyl
acrylite)
46 Retaxation Styrene -butadiene rabber
47 Rekaxation Polyisobotylene, poly{methyl methacrylate)
20 Reluxation Palyisobutylene
48 Creep and refaxation ABY, styrene - aerylositrile copolymer,
poly{vinyl chlonde), poly{methyl
methavrylate)
49 Creep Ruhber
ol Creep Pulycarbonate
38,51 Relaxation i ligh-density polyethylene
F4 Creep Many materials
8 Creep Cellulose nitrate
34 Stress relaxation Poly{vinyl alcohol} copolymers
Xy Stress relaxation Figh-density polyethylene
k) Stress relaxation Crystalling polymers
35 Stress relaxation Low-density polyethylene
3 Stress relaxation Polypropylene, high- and low-density
potyethylene '
52 Stress relaxation Polycurbonate
53 Stress relaxation Puolypropylene/vinyl chioride gralt

plymers
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The WLF equation can be used to convert data from a master curve
created at one temperature to that at another temperature or to find the
temperature dependence of the response at a selected time scale. In the
latter case, while it is easy to calculate 108 «, from the known values of
¢7 and (7, obtain the shifted time, and read the modulus at the shifted
time, Jones (54) has developed a homographic technique that can be used
to make quick estimates. The technique was developed for dynamic prop-
erties and so is discussed in Chapter 5. Nevertheless, the principle should
be applicable to transient data as well.

V. NONLINEAR RESPONSE

If the Boltzmann superposition principle holds, the creep strain is directly
proportional to the stress at any given time. &+ Similarly, the stress at any
given lime is directly proportional to the strain in stress relaxation. That
is. the creep compliance and the stress relaxation modulus arc independent
of the stress and drai*?. respectively. “This is generally true for small stresses
or strains, but the principle is not exact. If large loads are applied in creep
experiments or large strains in stress relaxation, as can occur in practical
structural applications, nonlinear effects come into play. One result is that
the response €l!) or a{r). respectively, is no longer direclly proportional
to the excitation (v or €}. The distribution of retardation or relaxation
times can also change, and so can a,.

“The problem is very complex even in cases where complications such
as microcracking or phase changes (e.g., appearance of Crystallinity, as in
stretching natural rubber, or change in percent Crystallinity in polyethylene)
arc absent. It involves unsolved problems in nonequilibrium thermody-
namics, mathematical approximations (although these are rapidly being
eliminated by the use of numerical methods) and the physics of any under-
lying processes. As a result, there is no general solution. However, in the
case of amorphous elastomers, very great progress has been made in the
phenomcnological or descriptive approach.

A. Strain Dependence of Stress Relaxation

[or elastomers, Tobolsky (6), Thirion and Chasset (5), and Guth et ai.
(56) have @l reported qualitative conclusions that the rate of stress relax-
ation is independent of the strain level for natural rubber and styrene-
butadiene rubber (SBR) for strains up to 80 to 100%. Martin et ai. (57)

tFor a single stress application: o bouds had heen applied i different times, the proportionality
wouht hold oply alter the initia! transicnt response had dicd our,
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and Halpin (58) have similarly reported that the creep rate is independent
of the stress level lor four different- types of elastomers for strains up to
about 2(X)%. Landel and Stedry (59) appear to have been the firg to publish
explicit stress-relaxation data showing the independence of strain and time,
for SBR (up to very large strains) and a polyurethanc rubber, llavsky and
Prins (60) and co-workers have presented similar explicit results for a series
of polyurethanc rubbers. Thus the response can be separated or factored
into functions of time and of stress. Factorizability, when it holds, offers
a powerful smplification to any attempt to develop theories or descriptions
of polymer response, whether phenomenologically OMnolecularly based,
as wel as an often stringent test of their validity. The factorizability is
eadly tested since plots of log <r(/) or log e(0 versus log / will dl be linear,
with the same slope. In the more general case, the curves will not be linear
but they will dill be parallel. A cross plot of the strains a any given time
againgt the stress will give the resulting isochronal (constant time) € ~ @
{or & — &) relationship.

Using this factorizability of response into a time-dependent and a strain-
dependent function. Landel et ai. (61,62) have proposed a theory that
would express tensile stress relaxation in the nonlinear regime as the prod-
uct of a time-dependent modulus and a function of the strain:

Ao(tA) = AENFe (V)] = GO F[u (V)] (30)

Here E{f) is the usua small-strain tensile stress-relaxation modulus as
described and observed in linear viscodlastic response [i.e., the same E{t)
as that discussed up to this point in the chapter). The nonlinearity function
Fe' (M)} describes the shape of the isochronal stress-strain curve. It is a
simple function of A, which, however, depends on the type of deformation.
Thus for uniaxial extension,

F=a'(h) = A (a1 31)

The underlying nonlinearity function «’(A). which is independent of the
type of deformation, is very similar for different amorphous rubbers. For
SBR, it is independent of the crosslink" density over moderate changes in
crosslink density (62) and independent of the temperature down to — 40°C,
a temperature where the modulus has increased by a factor of 2 to 3 over
the room-temperature value (61). The function #'(}) is insensitive to the
presence of moderate amounts of carbon black filler for strains up to about
100% (63). .

Moreover, in developing and testing the theory, biaxia stress-relaxation
experiments were carried out. That is, square sheets were stretched in both
directions but in unequal amounts. In al cases, the stress in the major
dretch direction relaxed at the same relative rate as that in the minor
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stretch direction—plots of log -stress versus log time were parallel. (The
maximum strains attained in these experiments approached 2(K)%.) The
observation of simple factorizability even under biaxial conditions (61-65)
should provide a powerful simplification for future theoretical develop-
ments. Factorizability holds through the rubbery plateau but breaks down,
for the particular SBR rubber used (61), at the beginning of the rubber-
to-glass transition /one—in the case studied, for time scales less than 1
min at --4°C and for time scales less than a few hundred minutes at

~45°C (61,66). Further discussions of #’(A) arc postponed to Chapter 5,
since #’(M) describes the shape of the stress-strain curve and we are dealing
here with creep and stress relaxation.

Factorizability has also been found to apply to polymer solutions and
melts in that both constant rate of shear and dynamic shear results can be
analyzed in terms of the linear viscoelastic response and a strain function.
The latter has been caled a damping function (67,68).

For glassy and crystalline polymers there are few data on the variation
of stress relaxation with amplitude of deformation. However, the data do
verify what one would expect on the basis of the response of elastomers.
Although the stress-relaxation modulus at a given time may be independent
of strain at small strains, at higher initia fixed strains the stress or the
stress-relaxation modulus decreases faster than expected, and the lloltz-
nuinn superposition principle no longer holds.

I'assaglia ami Koppehele (6>) found for cellulose monofilaments that
stress relaxation depended on the initia strain— the modulus decreased
as strain increased: The shape of the stress-relaxation curves changes dra-
matically with the imposed elongation for nylon and polyethylene ter-
ephthalate (70). Similar results were found with polyethylenes (64,71,72).
Polymers such as ABS materials and polycarbonates that can undergo cold
drawing show especially rapid stress relaxation at elongations near the yield
point. Aslong as the initial elongations are low enough for the stress-strain
curve to be linear, the stress relaxes dowly. However, in the region of the
stress-strain curve where the curve becomes nonlinear, the stress dies down
much more rapidly.

B. Stress Dependence of Creep

For elastomers, factorizability holds out to large strains (57,58). For glassy
and crystalline polymers the data confirm what would be expected from
stress relaxation—beyond the linear range the creep depends on the stress
- level. In some cases, factorizability holds over only limited ranges of stress
or time scale. One way of describing this nonlinear behavior in uniaxial
tensile creep, especially for high modulus/low creep polymers, is by a power
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law such as the Nutting equation (23,24),
e = Ko (32)

where K, B, and » are constants at a given temperature. The constant
isequal to or greater than 1.0. This equation represents many experimental
data reasonably accurately, but it has received little theoretical justification
(52-53). Note that in the linear region. 8 = 1, equation (32) implies that
log Do) islinear in log lime.” This means that it cannot hold over the whole
transition region since, experimentally, n changes with time. Hence equa-
tion (32) should be used with caution if data must be extrapolated to long
times.

The hyperbolic sine function aso fits many experimental simple tension
data, and it has considerable theoretical foundation (77-88):

¢ = K(r) sinh {—(’1 (33)
K{(r) is the function defining the time dependence of the creep. The constant
o is a critical stress characteristic of the material, and at stresses greater
than . the creep compliance increases rapidly with stress. .

At smal strains (i.e., in the linear region), K{t}/e. = D(s). Figure 11
illustrates the creep dependence of a polyethylene with a density of 0.950
at 22°C (89). In this case the critical stress IT,, was about 620 psi, and the
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FHgue 11  Shear creep € of polyethylene (density = 0.950) a different loads after

10min, and 444 as a function of applied stress. Deviation from the vadue of 10
indicates a dependence of creep compliance on load.
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creep was measured after 10 min. For this polyethylene the experimental
data after 10 min are accurately given by

3 r

e[ 10} = 0.792 sinh 530 - (34)
where the strain is given in percent and the stress in psi. Similar equations
hold for other times and temperatures. Plotted in the same figure is the
quantity

L sinh{o/or,) (35)

Ju ki,
where J,, is the creep compliance at very low loads. This ratio is 10 if the
Holt/mann superposition holds. In the case of polyethylene, deviations
become apparent at about 2(K}psi. and at a stress of 1000 psi, the compliance
ratio JAfy has increased by S0%. |n practical situations where a plastic
object must be subjected to loads for long periods of time without excessive
deformation, the stress should be less than the critical stress .-

Little is known about the variation of the critical stress¢. with structure
and temperature. For the polyethylene discussed above- !r. decreased from
620 psi at 22°C to 390 psi at 6I°CT this appears to be a general trend with
al polymers. Turner (84) found that the value of (r. for polyethylenes
increased by a factor of about 5 in going from a polymer with a density of
0.920 to a highly crystalline one with a density of 0.980. Reid (80,81) has
suggested that for rigid amorphous polymers. @, should be proportional
to {T, = T). For brittle polymers, the value of @, may be related to the
onset of crazing.

Equations (32) and (33) imply that factorizability holds and that an
applied stress does not shift the distribution of retardation times. The shape
of the creep curves when plotted as 10g € vs. log / is not changed by the
stress and the curves could be superposed by a vertical shift. When plotted
as € vs. 1 or log 1. however, the shapes are changed. However, the curves
can now be superimposed by'multiplying the compliance by a constant for
each stress to bring about a normalization in the vertical direction. On the
other hand, in some cases (often rigid polymers at high loads) stresses do
change the distribution of retardation times to shorter times (43,90-93).
Then a horizontal shift is required on log time plots to superimpose creep
curves obtained at different stresses even if the temperature is held constant
and factorizability no longer holds.

Many other data in the literature show a strong dependence of creep
compliance on the applied load, athough in some cases the authors did
not discuss this aspect of creep. Stress dependence is found with al kinds
of plastics. For example, the creep of polyethylene has been studied by
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severa authors {74,75.83 84,89.94-96), as has rigid poly(vinyl chloride)
(B0,H1.83.91.93,97 98). | eaderman (99) studied plasticized poly(vinyl chlo-
ride). Polystyrene has been investigated by Sauer and others (73,100), and
ABS polymers have been studied aso (87,93,101). Polypropylene has aso
been a popular polymer (92,102,103). Sharma studied a chlorinated poly-
ether (Penton) (104) and cellulose acetate butyrate (76). Nylon was studied
by Catsff et ai. (43), nitrocellulose by Van Holde (79), and an epoxy resin
by Ishai (K6). The relaxation times of an ABS polymer can be shortened
by as much as four decades by high loads (105). Dilation created by
the creep load is responsible for at least part of this speeded-up stress
relaxation.

VI. EFFECT OF PRESSURE

Few data are available on creep and stress relaxation at pressures other
than at 1 atm. However, the data are essentially what would be expected
if pressure decreases free volume and molecular or segmental mobility.
For elastomers, which are nearly incompressible, very high pressures are
required to change the response. Nevertheless, there is a pressure analog '
of the WLI- equation that accounts [or these changes (106). DeVries and
Backman (107) found that a pressure of 50,000 ps decreases the creep
compliance of polyethylene by a factor of over 10. Pressure increased the
stress-relaxation modulus a comparable amount. At the higher pressures
(30,000 psi), the stress continued to relax for a much longer time than it
did at 1 atm; pressure seems to shift some of the relaxation times to longer
times, just as in elastomers.

VIl. THERMAL TREATMENTS

Annealing of polymers increases the modulus and decreases the rate of
creep or stress relaxation at temperatures below the melting point or glass
transition temperature. This decrease in creep or stress relaxation of a
polymer after standing for some time after the preparation of a specimen
often is caled "physical aging" (108). As shown in Figure 12, physica
aging affects both the magnitude and rate of creep or relaxation. The
generad response a a fixed aging temperature is that of a change in mag-
nitude of a property, coupled with a very large shift along the time scale.
Asaresult, the less-aged responses can be superposed (in the log-log plots)
on the well-aged response.

Below T, stress relaxes out faster in quenched specimens than in sowly

cooled ones for amorphous polymerysuch as poly(methyl methacrylate)
(109). Quenched specimens of the same polymer have a creep rate at high
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Figure 12 Effect of increasing aging or annealing time. «,, on creep and stress
relaxation. The heavy arrow indicates increasing aging time; the dashed one, the
direction and amount of shifting required for superposition.

loads that is as high as 50 times the rate for specimens annealed at 95°C
for 24 h (110). The creep rate is strongly dependent on the annealing
temperature and the annealing time (108,111-115). At temperatures just
below T, most of the effects due to annealing can be achieved in a short
time. However, greater effects are possible by annealing at lower temper-
atures, but the annealing times become very long. Annealing affects the
creep behavior at long times much more than it dos the short-time behavior
(97). For example, unplasticized poly(vinyl chloride) annealed at 60°C had
nearly the same creep up U> 1000 s for specimens annealed for 1 h and for
2016 h. However, beyond 10,000 s, the specimen annealed for 1 h had
much greater creep than the specimen that had been annealed for 2016 h
(97). Findley (98) reports similar results. Principal parametersin the phys-
icd aging process are the total volume (or density) and its rate of change
with time. (Here one has a volumetric creep strain instead of the usually
measured tensile or shear creep strain.)
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Quenched amorphous polymers typicaly have densities from 10-4 to
10" % g/em” |ess than those for annealed polymers. Thus it appears that the
free volume is an important factor in determining creep and stress relax-
ation in the glassy state, especidly at long times. However, the relationship
between the free and total volume is not clear, even at small deformations.
In one treatment of this relation (116) it was possible to relate the aging
time to the shift along the time scale of stress relaxation in poly(methyl
methacrylate) from the concurrently measured volume change (117). Ten-
dle strains and large shear strains induce a dilation since Poisson's ratio is
not . If the fractiona free volume change, a percentage of the total volume
change, is the same in creep and structural relaxation, physical aging should
be reversed at large strains according to a free-volume explanation (108).
Initial work in creep and stress relaxation confirmed this reversal, but work
in more complex test modes disputes the reversal or the conclusion that
free volume controls changes in rate of creep or relaxation (118-121).

Crazing in glassy polymers greatly increases the creep and stress relax-
ation (122--125). The creep is smail up to an elongation great enough to
produce crazing; then the creep rate accelerates rapidly. Anything that
enhances crazing will increase the creep. These factors include adding low-
moleeular-weight polymer, minera oil, or rubber to produce a polyblend.
Even the atmosphere surrounding a specimen can change creep behavior
by changing the crazing behavior (126). Immersion in some liquids can
greatly enhance creep and crazing (127). The atmosphere can change the
creep of rubbers even though no crazing occurs (128). The creep of natural
rubber is much greater in air than in a vacuum or in nitrogen.

Annealing can reduce the creep of crystaline polymers in the same
manner as for glassy polymers (89,94,102). For example, the properties of
a gquenched specimen of low-density polyethylene will still be changing a
month after it is made. The creep decreases with time, while the density
and modulus increase with time of aging at room temperature. However,
for crystalline polymers such as polyethylene and polypropylene, both the
annealing temperature and the test temperatures are generally between

the melting point and 7. Thus for crystalline polymers the cause of the
decreased creep must be associated with the degree of Crystalinity, sec-
ondary crystallization, and changes in the crystallite morphology and per-
fection brought about by the heat treatment rather than with changes in
free volume or density.

VIll. EFFECT OF MOLECULAR WEIGHT:
MOLECULAR THEORY

At temperatures well below T, where polymers are brittle, their molecular
‘Wweight has a minor effect on creep and stress relaxation. This independence
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of properties from molecular weight results from the very short segments
of the molecules involved in molecular motion in the glassy state. Motion
of large segments of the polymer chains is frozen-in, and the restricted
motion of small segments can take place without affecting the remainder
of the molecule. If the molecular weight is below some critical value (129)
or if the polymer contains a large fraction of very low-molecular-weight
material mixed in with high-molecular-weight material, the polymer will
be extremely brittle and will have a lower-than-normal strength. Even these
wesk materials will have essentialy the same creep behavior as the normal
polymer as long as the loads or elongations are low. At higher loads or
elongations the wesk low-molecular-wcight materials may break at con-
siderably lower elongations than the high-molecular-weight polymers.
Crazing occurs more easly in low-molecular-weight polymers, which can
increase the creep or stressrelaxation rate before failure takes place. The
dependence of crazing on molecular weight of polystyrene in the presence
of certain liquids is well illustrated by the data of Rudd (130). As a result
of crazing by butanol, he found that the rate of stress relaxation is much
faster for low-molecular-weight polystyrene than for high-molecular-weight
material. This is to be expected since there are fewer than the normal
number of chains carrying the load in crazed materia. In addition, craze
cracks act as stress concentrators which increase the load on some chains
even more. These overstressed chains tend to either break or dip so as to
relieve the stress on them. Thus, in the glassy state, crazing is a major
factor in stress relaxation and in creep (131,132). Crazing may aso be at
least part of the reason why creep in tension is generally greater than creep
in compression, since little, if any, crazing occursin compression tests (133).
In the glass transition region the creep and stress relaxation is inde-.
pendent of molecular weight for M > M, and only weakly dependent on
M for M < M. when measured at a fixed value of T — 7. It isonly in
the elastomeric region above T that the behavior becomes strongly de-
pendent on molecular weight. ‘The important reason for this dependence
on molecular weight for uncross-linked, amorphous materials is that the
mechanical response of such materials is determined by their viscosity and
elagticity resulting from chain entanglements. When viscosity is the factor
determining creep behavior, the elongation versus time curve becomes a
straight line; that is, the'creep rate becomes constant. The melt viscosity
of polymers is extremely dependent on molecular weight as shown by
Figure 13 (134). When the polymer chains are so short that they do not
become entangled with one another, the viscosity is approximately pro-
portional to the molecular weight. When the chains are so long that they
become strongly entangled, it becomes difficult to move one chain past
another. Thus the viscosity becomes very high, and it becomes proportional
to the 3.4 or 3.5 power of the molecular weight (135-138). The break in



Creep and Stress Relaxation 91

10,000,000 — 4
- =
s 50°C |
| -
— 60T
SLOPE + 3.5 {
p— »
/ , TO'C
Iy a ea
&
= 1,000,000} / -
2 - » _
(=)
v - =
E [~ store - 1.0 N
- /n N
L)
- .
100,000 | }l | | | i$ 1 11
1 3 4 & 8 10
M, x 1974

FHgure 13 Mdt viscogty as a function of molecular weight for butyl rubber. (From
Re. 134)

the curve of Figure 13 gives the apprpximate molecular weight M, at which
entanglements can occur. The entanglements not only increase the viscosity
but also act as temporary cross-links and give rise to rubberlike elasticity
(28,139-141). [The value of M, obtained from viscosity measurements is
approximately twice the value calculated from the modulus equation of
the kinetic theory of rubber elasticity, which will be discussed later (1,6,16).
This result is what would be expected if half of a polymer chain containing
only one entanglement dangles on each side of the point where the chain
gets entangled with another chain,] _

In general, the two sections of the curve in Figure 13 can be represented
by an equation of the form (134-138,28)

logn =log K, + K,log M (36)
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"The constant K, depends,on the structure of the polymer and on the
temperature. "The constant K has different values below and above M.
ami is also sensitive to temperature below M,. For M - M. the chains are
so short that the change in M strongly affects 7. Since properties are best
compared at corresponding states, they should be compared at the same
r . When this is done. X is temperature independent and X, .=
(142). For M - M. K, is dways temperature independent and K. = 3 4
to 3.5. For sharp fractions, the value of al the molecular weight averages
are nearly the same, lor unfractionated polymers ami polymer blends, M
should be the weight-average molecular weight, or better yet, the viscosity-
average molecular weight.

‘The molecular origins of these polymer responses and their change with
the time scale or frequency of observation is now farly wel understood.
Using the stress relaxation modulus as a reference, in the glassy state and
the initia glass-to-rubber transition region, the response is due to the
motion of very short-chain segments—one or two monomer units long.
"These are librational or rotational modes of motion. "The elastic restoring
force comes from the potential barrier to this libration or rotation. In the
glassy state, the locd structure is an unstable one, becoming more dense
with aging time, so interaction increases and the rate of motion is reduced
with aging. In the upper end of the transition /one, the structure has been
modeled as a damped Debye oscillator (143) and as a less specific inter-
action between segment and surroundings characterized by a coupling con-
stant /i (144).

In the fird model, the relaxation time is till given by the Rouse form

1, = T, ;— (37
but now £, is not a constant, so
E() = X e (38)
»
and the modulus fdls off as¢ ¥*. In the second model.
= ({1 - m)ewir]" 1 -m (39)

where w, is an atomic vibration frequency, t, a primitive relaxation time
for a motion uncoupled from its surroundings, and # a measure of the
strength of coupling. This leads to a "stretched-exponential" representation
of £1{4} [i.e., a single exponential term but with the exponent raised to a
power B, = {1 ~ n)}:

Eny = E, f e Wt gy (40)
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This form is also known as the Williams-Watts functiont (145). It is a
powerful yet simple form to use in fitting data, since it can accommodate
any slope in the transition region. However, equation (40) cannot describe
a complete master curve from glassy to rubbery state with a single value
of B. Instead, B (or ») is taken to be time (or temperature) dependent.

As the time scale of observation increases, the response of increasingly
large segments is being observed. As £(#) drops below 107 to 10" Pa, two
new mechanisms of behavior control the response. The local structure no
longer impedes the chain segmental motion and the entropy takes over as
the restoring force. That is, the chain segments have a rubberlike el asticity,
with each segment of molecular weight M., having a modulus of &T/M,,,.
When chains are disturbed from their equilibrium position as a step strain
is imposed, al segments initialy respond with this elastic restoring force
but then begin immediately to diffuse under Brownian motion toward a
new equilibrium position. This motion is impeded by the local viscosity of
the surrounding chains. A description, or model, of this response was first
developed by Rouse (13) and Zimm (14) for dilute solutions, but the Rouse
treatment is applicable to undiluted polymer as well (17,18,21). As noted
earlier, a discrete spectrum of relaxation times emerges [see equations (16)
ad (17)]. For molecular weight below the "entanglement” molecular weight, .
these equations describe the complete course of the relaxation process and
the flow behavior.

If the molecular weight is above a critical value, the chain segments
impede each other's motion. This entanglement effect has long been known
(146) and was formerly attributed to the looping of chains around each
other. The current picture is that adjoining chains and chain segments
impede the lateral diffusion while diffusion along a chain's contour length
is largdy unmodified. The local constraints inhibiting lateral motion can
be thought of as defining a tubular shell through which the chain can diffuse.
Consequently, relaxational processes now involve primarily a slithering
through the surrounding medium, the tube, in a snakelike motion called
reptation (147). The diameter of the tube is now defined by a critical
molecular length above which reptation starts. This is the same critical
molecular weight as for entanglement, so the symbol M, is retained, but
"entanglement” is now given a very clear physical origin. In the Doi-
Edwards (17-19) detailed description of the molecular motions involved,
the Rouse-like motion passes over to the reptation-controlled motion at a
time
= Nirg

T =TT

P

YThis implies that H = Ege tvm® |
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where N, is the number of segments of Size M,. Bgyond this point. 7.[Rouse)
changes to 7,(rcptation).

s

NY INY,
Teep = 6(1}\{) T, = N (4I)
and at the same time the modulus becomes essentially constant:
RT
E(ty = v RT =2l = g, (42)

r

]

This is the entanglement plateau and the modulus is given by the concen-
tration of Rouse submolecule chains per cubic centimeter, vy, or the
molecular weight between entanglements M,,. (This plateau region can have
a dight slope, which arises because the lateral constraints to motion arc
themselves moving and this constraint release mechanism makes i\, a
dowly decreasing function of the time scale of observation.) "The plateau
persists until ‘a second critical time scale.

N N,
T E(N) Ty = —";" {43)

At this point both the spectrum of relaxation times and the way they
contribute to the modulus change, so that

. 88, " L
E 0= Y ¢ Xl — FLRL TP 44
( } 1.r2 ;lza'l jl%’ll Pz ( )
and
AV A
Trep = ()(E) Ta = 5:;;: (R}’) Ta (45)

Beyond 7,4, whole molecules are moving and contributing to viscous flow
[i.e., equation (44) describes the long-time tail of the stress relaxation curve
or the onset of the flow regime].

The Doi-Edwards roptation model thus predicts that the width of the
* modulus plateau varies as the square of the molecular weight, or, in com-
paring different polymers that have different M. values, as (M/M,):. An-
other way of stating this is to say that the monomeric friction factor has
been increased by the factor (M/M.). Furthermore, since in general M =
G, this model predicts that at constant temperature the viscosity will be
proportional to molecular weight below M, (Rouse-like response) and
proportional to M?* above it (reptation response). Experimentally, in the
M = M, regime, chain ends markedly reduce 7. so the comparison must
be made at equivalent states (i.e., at constant T — T,) (142). When this
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isdone, direct proportionality isindeed found [see equation (36) and Figure
13). For M > M,. however, the viscosity is always proportional to M**.
More detailed analyses of the tube and of the chain within the tube (18,148-
151) show that the viscodity response is better modeled with the factor (Ml
M,)"? replaced by (M/M,)* "** (18}, which is in good agreement with
experiment [equation (36)J.

In the steady flow regime, only the longest relaxation time is applicable,
S0 equation (16) becomes

_ mpRTr,  pNa*ML,
TooeM T 3eMm}

where N, is Avogadro's number, « an effective bond length along the
backbone chain. M, the monomer molecular weight, and &, the monomeric
friction factor. ‘The latter is a measure of the force required to pull a
polymer chain through its surroundings at unit speed. It is inversely pro-
portional to the polymer sdf-diffusion coefficient.

Bueche (16,152) had earlier proposed a related theory based on a spring-
bead model (springs with a rubberlikc €elasticity spring constant coupled
in a linear chain by beads whose friction factor supplies the viscous resist-
ance). This theory as extended by Fox and co-workers (28,153) gives

{46)

Ny (*12)) ) (z..-)a
n=p ( w o \L g (47
where
a=1 for z,. < z,

a=335 for z,, > z.

In this equation z,, is the weight-average number of atoms in the backbone
of the polymer chains, z, the average number of atoms in the backbone
of the polymer chains between entanglements, & the friction factor per
backbone chain atom (rather than the chain monomer as in the Rouse
theory), and ¢s3} the mean-square radius of gyration of the polymer chains.
The chain length z.. may be calculated from the molecular weight M.. and
the molecular weight of the monomer M, for monomers that have two
backbone atoms per monomer unit by
2M,,

z, M, (48)
The redius of gyration {s3} of polymers is generally determined from light-
scattering measurements on dilute polymer solutions and {s§M is a constant
for a given polymer. Vaues for many polymers are tabulated in Ref. 154.
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The monomeric friction factors &, and ¢ have a temperature dependence
given by the Williams-Landel-Ferry (WLF) relation, equation (27):
Eu - _I'_ A _I_”ﬂL_Q 1
Il.i,‘};’z ——lt:ﬂg.nJlf e T T {49)
where ¢, is the value of the friction coefficient at ¥,. Apparently for al
polymers,

Q) 2,

e 4T e (50)

"The molecular weight distribution, as well as the average moleculair
weight, affects the viscosity, creep compliance, and the stress relaxation
modulus (1,155-- U>0). For a broad molecular weight distribution the pla-
teau regions in creep and relaxation become less flat and the stress relax-
aion in the termina zone becomes broad. The steady-state creep com-
pliance is extremely sensitive to the high-molecular-weight tail of tht:
molecular weight distribution. Thus the modified Rouse theory would pre-
diet (1), for a most probable molecular weight distribution.

~ML M,
COSALL T
For blends made up of two fractions of different molecular weight, the

viscosity of the blend y\, is a a given temperature in some cases approx-
imated by

N = by b b A (51

where the subscripts refer to fractions 1 and 2, ¢, is the volume fraction
of fraction 1, n, the corresponding viscosity, and A a concentration weight-
ing factor that in some cases is given by (159)

A = (%i’) i=1,2 (52)

Nere- M, is the weight-average molecular weight of the blend, and M,

is the weight-average molecular weight of component ]. The steady-state
creep compliance 4. of the blend is

2 Ao+ Aini.

/ .
i

-

(53)
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The stress relaxation shear modulus of the blend, ,{¢) is
‘ ¢
Gule) = ‘bl("l(“') 1 (b_‘(f_,(""\?. (54)
Ay A

Only the long-time (or high-temperature) response is affected (i.e., where
(7 drops off from the rubbery platea-u). "The broader the distribution, the
narrower the plateau and the more gradual the drop beyond it. Here the
A terms are shift factors on the time scale used in making master curves;
the A, change the time scale from ; to #/A,. These equations are semiempiricul
and must be used with caution. Schausberger et ai. (161) and tider et ai.
(162) have developed a more complete description for the effect of mo-
lecular weight distribution and multilraction blending based on the Doi-
Edwards theory and assumed additivity of dynamic modulus components.
“The results can be applied to stress relaxation. '

An example of experimental stress-relaxation data is shown in Figure
14 (160). Master stress-relaxation curves made from the experimental data
on different molecular weight materials are shown in Figure 15. The tem-
perature-shift factors used in making the master curves are shown in Figure
16. Note that the shift factors a,- are the same for al molecular weights
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Foue 14 Stressrdaxation data on poly(a-methylstyrcne) a various tempera
tures Molecular weght is 460,000. (From Ref. 160)
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Figure 15 Stress-relaxation master curves for poly(a-methylstyrene) of various
molecular weights. Reference temperature = 459 K. (From Ref. 160.)

and follow a WLF relation. The molecular weights covered the range shown
in the following table:

Sample Malecular weight
Al 39,000
A2 91,000
Al 135.000
A4 2ZR0.ANND
AS 4600, (NN)

“The plateau in the stress-relaxation modulus £(s) near 107 dynicm? is due
to the onset of reptational motion, or chain entanglements. The higher the
molecular weight, the longer it takes for free chain diffuson to occur (i.e.,
for chain entanglements to disappear). Polymers behave as purely viscous
liquids only at times beyond the plateau region where the stress-relaxation
modulus decreases rapidly again. In the plateau region the materials have
-elasticity and behave very similar to vulcanized rubbers.

Chain branching affects the viscosity, the longest relaxation time, and
the steady-state compliance and therefore influences creep and stress re-
laxation (19,163- 167). The effect is difficult to quantify because the length
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Figure 16 WLF shift factors for various molecular weight poly(a-methylstyrenes).
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and number of branches can vary, and the branches can al originate at
one point (as in a cross or star), or they can be spaced along the chain (as
in a comb). Molecules consisting of three or lour long branches of equal
length, which are long enough to form entanglements, have higher viscosity
than that of linear polymers of the same molecular weight at very dow
rates of deformation. At higher rates, however, the branched polymers
have the smaller melt viscosity (165). If a branched polymer is to have a
higher viscosity than'a linear polymer of the same molecular weight, the
branches must be so long that they can have entanglements (164) (i.e.,
move by rcptation). Otherwise, branched polymers have lower viscosity
than that of linear polymers (I6K). "Thus branching can either increase or
decrease viscosity (167). Bueche (163) has attempted to explain theoreti-
cdly the effect of branching on viscosity. The important factor is the ratio
of the mean-square radius of the branched molecules to that of the linear
polymer of the same molecular weight, since branching changes the volume
occupied by a chain.

Star-shaped polymer molecules with long branches not only increase the
viscogity in the molten state and the steady-state compliance, but the star
polymers also decrease the rate of stress relaxation (and creep) compared
to a linear polymer (169). The decrease in creep and relaxation rate of
star-shaped molecules can be due to extra entanglements because of the
many long branches, or the effect can be due to the suppression of reptation
of the branches. Linear polymers can reptate, but the bulky center of the
star and the different directions of the branch chains from the center make
reptation difficult. .

IX. EFFECT OF PLASTICIZERS ON MELT
VISCOSITY

Plasticizer or liquid diluents greatly reduce the melt viscosity of polymers
(28.170-177). Smal amounts of liquids at temperatures Just above T,
produce an eepeaally dramatlc decrease in viscosity. Several factors are
responsible for the decrease:
1. Liquids lower the glass transition temperature, and according to the
WLF theory, the viscosity and relaxation times are decreased.
2. Diluents increase the molecular weight between entanglements ac-
cording to the equation
Me
M. iy (55)
where M. is the molecular weight between entanglements lor the
undiluted polymer, and &, is the volume fraction of polymer.
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3. Mixing a high-viscosity liquid with one of low viscosity reduces the
viscosity just because of the dilution of the polymer.

At the high polymer concentration used in plasticized systems the vis-
cosity of amorphous polymer is given by the modified Rouse theory at low
molecular weight, M = 2M, [from equation (47)] and by the modified Doi-
Edwards equation at high molecular weight. In the firg case

n @l o
To Cottilom Akrid oo

Here ¢ is the polymer concentration by weight. ¢, the density of the poly-
mer, a an effective bond length or measure of the coil dimensions, and Lo
the monomeric friction factor. The subscript zero indicates the pure poly-
. mer. Since #? = {rY}, the mean-square end-to-end chain separation, the
viscosity will be directly proportional to the polymer concentration unless
the plasticizer modifies the coil swelling. At high molecular weight the
monomeric friction factor is increased by the factor (M/M,)* and M, is
increased relative to the undiluted polymer [equation (55)]. Thus

(MY _ (oMY
;flf"" L[‘;(M,) = C{'(M ) (57)_

-

(56)

where the superscripts // and L refer to high and low molecular weight
polymer, respectively. Thus

n _ @bl | croi,

My Cotilim Clrotom (58)
Since @y = ¢/Ppowmer and @ = 2.3 (modified Doi- Edwards) or 2.4 (by
direct measurement), the viscosity should increase as ¢ (or ¢,) to the 3.4
power a a fixed T —T; where & = L

Bueche (16,172) proposed that the viscosity is proportional to the fourth
power of the polymer concentration and a complex function of the free
volume of the mixture. Kraus and Gruver (170) find that the 3.4 power
fits experimental data better than does the fourth power. They used equa-
tion (58) with {#*) replaced by the mean-square radius of gyration (s%). The
term {r2/(rd) indicates that poor solvents should lower the viscosity more
than a good solvent. As the temperature increases, the factor {{s2)/Zo{s2)
increases as a function of the ratio (T — T,n)/(T — T,,). The glasstransition
temperatures of the polymer and diluent are T, and7,p, respectively.

Since experimental and theoretical results show variations in viscosity
that range al the way from the firsg power to the fourteenth power of the
solvent concentration, it is nearly impossible to predict accurately the vis-
cogty of polymers containing a solvent or plasticizer. As a rough approx-
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imation, the logarithmic mixture rule is useful:
logm = &, log m, + & log n, {59)

In this equation {> and g, are the volume fraction and viscosity of the pure
polymer at the temperature under consideration. The subscript 2 refers to
the solvent or plasticizer.

X. CROSS-LINKING

Well above the glass transition temperature 7., the initial effect of adding
cross-links is to increase the molecular weight and hence to widen the
rubbery plateau in £(1). This decreases the importance of viscous flow and
increases the elagticity of the material as measured at long times or high
temperature. Once a network or gd has formed, cross-linking gives stress
relaxation curves that level off to a finite instead of a zero stress at long
times and creep curves that tend to level off to a constant deformation at
long times. In an ideal rubber the stress remains constant at al times during
a stress-relaxation test. The creep curve of an ideal rubber shows a definite
deformation on application of the load, and the strain remains at this
constant value until the load is removed, at which time the rubber snaps
back to its original length. Thus an idea cross-linked rubber is a perfect
spring at long times. However, in practice, cross-linked elastomers can
have very imperfect network structures that contain dangling chain ends,
loops in polymer chains, and branched molecules only partly incorporated
into the network, as wel as molecules entrapped in the network but not
attached to it by chemica bonds (1,178-182).

As noted above, normal cross-linking does not appreciably modify the
transition zone. Hence the stress-relaxation modulus is smply the sum of
* the time-depenent contributions of the Rouse-like segment motion of the
cross-linked polymer chains E(7). [equations (17) and (16) or (46)] and of
the equilibrium modulus £.4 representing the ideal rubber, modified at
times longer than the longest segmental relaxation time by contributions
from the dangling chain ends and entanglement slippage £(0)...:

E(t) = (E(1), + Ecqm)E(Wen (60)

Thus at a given temperature, the location of the transition zone of E(!),
on the time scale is determined by the monomeric friction factor, the height
of the entanglement plateau by M., and the width of the plateau by {M/
M., *. The time dependence of entanglement slippage. £(t)ca» describes
the rate at which the entanglement plateau will drop to the equilibrium



Creep and Stress Relaxation 103

plateau. It was firs given empirically by Plazek (183) for creep and sub-
sequently derived for stress relaxation from reptation dynamics by Curro
et ai. (184,185). A useful expression for Plazek"s tabulated £{)..., function
is (185a):

log E(fep = —4.72 x 10 % —~ 2.98 x 10" log(1/a,)
- 4.32 x 10" " logi(ra,) ~ 6.23 x 10 *log*(¥a,) (59)

vaid over the range - 16 < log(t/a,) < @, where qa, is a shift factor which
depends on the degree of cross-linking and shifts log £{f).. aong the line
log £, until it joins with the curve logl £(2), + E{f) -

Figure 17 shows the course of £(¢) for live uncross-linked rubbers as
calculated by Landel and Fedors (186) from the Marvin (187) extension
of the Rouse theory to undiluted polymers, which gives the time depend-
ence of F{f),. 'The Marvin theory employs the Rons®, parameters a, the
bond length, and Ls. the monomeric friction factor, plus the ratio M/M,.
The addition of a term E.qm: Whose magnitude will be determined by the
extent of cross-linking (i.e., the elastic chain concentration as determined
by swelling) would give rise to the dashed-line response shown in Figure
18 for the silicone rubber. Finally, the solid line shows the expected re-
sponse when the entanglement term is added. Using this approach, Landel
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FHgure 17 Cdculated dressrelaxation behavior & 298 K for five uncross-linked
dagomers of M = 200,000: EP, cthylene-propylene (56:44); styrene-butadiene
(235:76.5), SB; naturad rubber, N; butyl; and dimethyl sloxane.
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Figure 18 Calculated siress-relaxation curves for styrene-butadiene and silicone
rubbers, bath uncross-linked (from Figure 17) and cross-linked to v, = 56 x 10 °*
mol/cm*. and for SBR additionally, cross-linked to v, = 100 and 200 x 10-9
mol/cm*. The honzontal bars show the location of the equilibrium modulus for
SBR. M = 20060, T = 298 K.

and Fedors calculated E{s) for four quite different types of elastomers.
They showed that £(/) can be predicted with no adjustable parameters,
using molecular constants evaluated a priori, over at least seven decades
of reduced time (Figure 19). Table 4 gives the constants for these and some
other typica polymers (186).

The earlier, semiphenomenological Marvin theory is identica to the
detailed Doi-Edwards (DE) molecular theory in the transition zone and
mimics the DE response in the plateau and flow region rather well, es-
pecialy if the effects of the molecular weight distribution are included in
the DE response. A more refined treatment of the effect of chemical cross-
links in reducing the number of entanglements would remove the dight
hump seen in the calculated curves of Figures 18 and 19. The chemicd
nature of the polymer chains is only of minor importance as long as labile
groups are not introduced.

Highly cross-linked rubbers swell less in good solvents than do lightly
cross-linked rubbers(188,189). For this reason, swelling in solventsis often
used to determine quantitatively the degree of cross-linking. However, in
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Figure 19 Comparison of calcubated {curves) versus experimental (points) mod-
ulus results for the same elastemers shown in Figure 17, M assumed 200,000 in
each case; T = 298 K. The values of v, x 10* are SBR, 100; butyl, 113; silicone,
38, and hevea, 16K.

Table 4 Molecular Parameters for Various Polymers (from Ref. 186).

P Tn log ;!I Mc Ml‘.l
glem* K dynes - cm/sec p/mole | g/mole
Styrene-butadiene® - 0.93 210 -6.1 3,000 65.3
Hevea 0.91 200 ~6.41 5,750 68
Butyl (PIB) 0937 205 ~4.35 8900 56
Butadiene® — 172 -6.75 2,950 54
Ethylene-propylenct 0.87 216 ~8.36 1,660 33
(56/44)

Dimethyl sitoxane 0.980 150 -B.05 8,100 74
Vinyl acetate 1.18 305 4.29¢ 12,250 B6
Methyl acrylate — 276 0.32 12,0000 86
Ethylene 0.85 (148} — 1,900 28

*Random copolymer

‘dsiransivinyl = 43757, lighily valcanized with dicumyl peroxide
‘Ethylene/propylene = 56/44, by mole

AL T,

‘M2

"Estimated from platcau height of E(n)

AL 100°C
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many respects, mechanical tests such as clastic moduli are more suitable
for estimating the degree of cross-linking, especialy moduli determined on
swollen specimens. This topic is discussed later when we cover the kinetic
theory of rubber dasticity. The effect of cross-linking (as indicated by swelling
tests) on creep is illustrated in Figure 20 (190). The degree of crosslinking
is given in terms of the swelling ratio g, which is defined as the ratio of the
volume of the swollen gd to the volume of the unswollen gel.

A crude estimate of the perfection of the network structure is given by
the sol fraction, which is the fraction of the cross-linked polymer that can
be extracted by a good solvent. The higher the sol fraction the less perfect
is the network .structure. As noted above, an especialy important type of
imperfection in networks appears to be entrapped entanglements (181,182).
An entanglement is trapped when both ends of each of the two chain
segments involved in an entanglement arc attached to the network struc-
ture. Otherwise the entanglement can eventually disappear by dragging
the unattached branched segments through the network to relieve the
applied stress. "These entrapped entanglements can have extremely long
relaxation or retardation times, as can be seen in Figures 18 and 19.

As might be expected, the creep response resembles an inverted image
of the stress relaxation response. Figure 20 shows the creep response over
a short region of the time scale where the uncross-linked polymer is in the
flow regime. The deformation increases nearly linearly with log time and
its rate shows no tendency to decrease even at long times. Small degrees
of cross-linking greatly decrease the creep rate, but creep still continues,
apparently forever (138,191 -194,183). Higher degrees of cross-linking cut
down both the creep and the creep rate, so that after a time, the creep
reaches essentially a limiting value even though the creep rate may never
drop completely to zero in some cases. In very long time tests or in use
conditions, the possibility of chemical degradation or cross-linking from
oxygen and ultra-violet light must be kept in mind. The great decrease in
compliance that occurs when cross-linking converts the polymer from a
soluble material into a gel has aso been found for other rubbers, such as
polybutadiene (195) and plasticized methacrylate (196).

Farlie (197) has measured both the rate of creep and the rate of stress
relaxation of natural rubber as a function of the degree of cross-linking.
‘As expected from the results of Figure 18, both rates decrease with cross-
linking. Farlie's results, and those of Berry and Watson (198), also illustrate
the effect of either network morphology or the chemical nature of the
cross-linking agent since the rates for sulfur vulcanizates at a given degree
of crosslinking are two or three times as great as the rates found for
peroxides as the vulcdnizing agent; the sulfide linkages in sulfur vulcani-
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Figure 20 Creep of SBR rubbers at 24°C. (A) Uncross-linked, M,, = 280,000.
(B) Lightly cross-linked M, = 29000, ¢ = 33.5, 50l fraction = 34%. (C) Mod-
erately cross-linked, M. = 18,200, ¢ = 25.8, sol fraction = 24%. (D) Moderately
cross-linked, M. 2 14,41, ¢ = 21, sol fraction = 20.4%. (E) Highly cross-linked,
M, = 5200, g = 6.8, sol fraction = 9.5%. Swelling liquid was benzene. Load =
51b/in.2. (From Ref. 190.) :

zates may be labile and undergo interchange reactions that relieve the
stress.

Experiments have been made in which uncross-linkable polymer rubbers
have been added to a similar rubber that is subsequently cross-linked (199).
As an example, polyisobutylene was added to butyl rubber before it was
cross-linked. The polyisobutylene molecules were not attached to the net-
work structure, so they could be extracted by a solvent. As expected, the
polyisobutylene greatly increased the creep compliance over that of the
pure butyl rubber.

Plazek (183) carried out very accurate creep experiments on natural
rubber as a function of cross-linking. He found that data at different tem-
peratures could be superimposed by the usual WLF shift factors which
were developed for non-cross-linked poiymers (27). Temperature-superposed
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civet- curves tor different degrees of cross-linking could be further super-
imposed to give a master creep curve hy horizontal shifts and by vertical
shifts determined by the degree of cross-linking. The vertical shift factor
IN gitcn in fopfE(M VEIAED]. where F(M.) s the long-time equilibrium
modulus ol .1 rubber with a molecular weight between cross-links oi M,,
while ELM7)Y s the equilibrium modulus of a reference rubber with a mo-
lecular weight between cross-links of #f. The horizontal shifts are a very
strong function of the degree ol cross-linking. { A, /A" ™,

1'iecp measui ements ni ihc glassy state are complicated by the phys-
ical aging process, which can go on in imaged samples or as the meas-
urement temperature is raised. Furthermore, the cure cycle itself can
at left the magnitude ol the compliance (modulus), the creep rale, and
the apparent /, [_‘nll.__’(ll], Although the effects are often small, their
lack of control reduces the scientific interest in many creep studies, just
as in earlier work the omission of cross-link density measurements pre-
vented full interpretation of results. It appears that cross-linking has no
major effect on the creep of polymers at temperatures well below their
glass transition region. In rigid, brittle polymers, molecular motions are
so fro/en-in that the additional restrictions of cross-links arc hardly
noticeable. The creep of rigid polymers is strongly dependent on the
elastic modulus, the mechanical damping, and the difference between
!, anil the ambient temperature. Some thermoset materials, such as
phenol - formaldehyde and mclamine resins, have high moduli, low me-
chanical damping, and high glass transition temperatures; al of these
factors tend to reduce creep and creep rate, so these types of polymers
generally have low creep and very good dimensional stability. On the
other hand, some epoxy and polyester resins have much greater creep.
‘They may have shear moduli less than 10" dyn/cm® because of low-
temperature secondary glass transitions (202-205) or because of free
volume frozen-in during the cure process. Because of this effect, Plazek
and Choy (200.201) have found that more highly cross-linked epoxies
can actually have a lower modulus, and thus greater creep, than more
lightly cross-linked ones. In addition, because of their chemical structure
and low curing temperature, many epoxy and polyester resins have rel-
atively low glass transition temperatures. For these reasons, such resins
may have considerably greater creep than the more highly cross-linked
phenol - formaldehyde resins.

An effect of network morphology is illustrated by the work of Shen and
Tobolsky (ISO). "They cross-linked rubbers in the presence of inert diluents;
such polymerizations tend to promote intramolecular chain loops rather
than interchain cross-links. "Ther polymers had very low stress-relaxation



Creep and Stress Relaxation 109

moduli compared to normal vulcanized rubbers containing similar concen-
trations of cross-linking agent.

Xl. CRYSTALLINITY

Above T, Crystallinity decreases creep compliance, creep rate, and rate
of stress relaxation while increasing the stress relaxation modulus. Several
theories have been developed to explain these phenomena (206-212).
These effects of Crystallinity come about from the apparent cross-linking
as a result of the ends of many chain segments being immobilized in differ-
ent crystallites and from the rigid crystallites acting as filler particles (206-
208). Figures 21 and 22 illustrate schematically the effects of changing the
degree of Crystallinity on creep and stress relaxation above 7. (The shapes
and absolute values of these curves are rough approximations to any real
polymer, as the properties can vary considerably from polymer to polymer.
The curves illustrate general trends as the degree of Cryddlinity is changed.)
Even small amounts of Crystdlinity can dramatically decrease creep or
stress relaxation without greatly increasing the modulus of the material
(213-215). Plasticized poly(vinyl chloride) film is an example; this elas-
tomer maintains reasonable dimensional stability for long periods of time
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Figure 21  Creep compliance as a funclion of degree of crystallinity above T,.
Numbers on curves are rough values of the degree of crystallinity,
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Figure 22 Stress-relaxation modulus as a function of Crystalinity at temperatures
above 7, Numbers on the curves are rough values of the degree of Crystallinity.

without excessive flow (213). The degree of Crystdlinity is so low, or the
crystalites are so imperfect, that in many cases Crygalinity cannot be
detected by x-ray diffraction. Poly(vinvl acohol) copolymers of low to
moderate hydroxyl content are another example (214). Low-7,-value poly-
mcers containing less than about 15 to 2()"/< Crystallinity behave essentially
as cross-linked rubbers (52,216,217). At crystallinities greater than about
40 or 50%, the crystallites may become a continuous phase instead of just
a dispersed phase in a rubbery matrix (212); in such materials the modulus
is high, and it becomes only very dightly dependent on time.

The temperature dependence of the compliance and the stress relaxation

~modulus of crystalline polymers well above T, is greater than that of cross-

linked polymers, but in the glass-to-rubber transition region the temper-
ature dependence is less than for an amorphous polymer. A factor in this
large temperature dependence at T >> T, is the decrease in the degree
of Crystdlinity with temperature. Other factors arc the recrystallization of
strained crystallites into unstrained ones and the rotation of crystallites to
relieve the applied stress (38). All of these effects occur more rapidly as
the temperature is raised.

The distribution of relaxation or retardation times is much broader for
cystalinc than for amorphous polymers. “The Boltzmann superposition
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principle often does not hold:for crystalline polymers at long times (H9).
Recrystalli/ation and other changes in the crystallites are (he probable
cause. “The WLF time--temperature superposition principle (27) generaly
is not applicable to crystalline polymers except a low degrees of Crydta-
linity (52,89,214,215,218,219). This is again partly due to the change of
Cryddlinity and other factors with temperature. In many cases master
curves cannot be made for crystalline polymers; in other cases master curves
can be made by using vertical aswel as horizontal shifts of the experimental
curves (36-38,218,219). The horizontal shifts may not correspond to the
usua WLF shifts, however. Figures 23 to 25 illustrate the typical differences
in the stress-relaxation behavior oi amorphous and crystalline materials
(52). (It is believed that the values-of Crystdlinity given on these curves
are low by a factor of & least 2.) "These figures show how Crystalinity
flattens out the stress-relaxation curves (i.e., broadens the distribution of
relaxation times). In this case of polycarbonate, the Tk value appears to
increase dightly with the degree of Crystalinity.

Annealing and aso aging can change the degree of Crystdlinity to some
extent, but thermal treatments often change the morphology more by in-
creasing the length between folds in the crystallites or by making spherulitic
structure more pronounced (220). Thus annealing and aging above Ty
increase the modulus and decrease the creep and stress-relaxation rates
(89,92). If the polymer is aged below the Ty value of the amorphous region,
the modulus increases because of physica aging as discussed above.

Only a few representative cases of the hundreds of articles on the creep
and stress relaxation of crystalline polymers can be referred to here. The
creep of polyethylene has been discussed by Carey (95), Findley (98),
Turner (84), Nielsen (89) and Nakayasu et ai. (221). In the latter case the
response was clarified by extending the time scale through combined creep
and dynamic compliance measurements. The contributions of different
mechanisms (and their temperature dependence) could then be resolved
by analyzing the dynamic data. - The stress relaxation of polyethylene has
been studied by Becker (72), Catsff et ai. (221), Nagamatsu et ai. (218),
and Faucher (33). Results on polypropylene are given by Faucher (33) and
Turner (92). The stress relaxation of polycarbonate over a range of Crys
talinity is reported by Mercier and Groeninckx (217), that of nylon 6 by
Yoshitomi et ai. (223) and Onogi et ai. (224), that of poly(vinyl acetals)
by Fujino et ai. (214), and that of fluorinated polymers by Nagamatsu and
co-workers (225,226). The creep of poly(vinyl alcohol) as affected by water
was studied by Yamamura and Kuramoto (227), while the creep of a
fluorinated polymer was investigated by Findley and Khoda (228). The
stress relaxation of polyoxymethylcnc was measured by Gohn and Fox
(229).
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Figure 23. Stressrelaxation curves of amorphous bisphenol A polycarbonate at
the different temperatures shown by the curves. The numbers in brackets are the
maximum deformations used in the tests. (From Ref. 217.)

The stretching of amorphous but crystallizable materials can greatly
'increase the rate of crystallization in some cases. Natural rubber and poly-
ethylene terephthal ate are examples. The stretching of the polymer initialy
causes the crystallites to grow so that the chains in the crystalites are
oriented parallel to the applied stress. Thus the growth of the crystalites
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FHoure 24. Stressrelaxation curves of crysdline bisphenol A polycarbonate at
the temperatures shown by the curves. ‘I'he degree of Cryddlinity wes IX%. (From
Ret. 217)

straightens out the cuilccl-up chain segments and causes the stress to relax
rapidly or causes the specimen to elongate rapidly in the case of a creep
test (230,231).

Xll. COPOLYMERS AND PLASTICIZATION

The primary effect of Copolymerization and plasticizer” is to shift the glass
transition temperature, so the creep, and stress-relaxation curves are aso
shifted on the temperature scale the same amount as ¥,,. Time-temperature

superposition still holds tot such materials. A second major effect that can
occur is a change in the plateau modulus. Plasticixers decrease it; copol-
ymers either increase or decrease it depending on their own plateau mod-
ulus and the concentration. However, two secondary effects are often
observed with both copolymers and plasticized polymers that modify the
creep and stress-relaxation behavior somewhat. Occasionally, Copolymer-
ization and some Plagticixers broaden the glass transition region compared
to the pure homopolymers (232-234). This broadening can cause some
decrease in du/dT. A second effect is sometimes found in the glassy state
when Pladticixers are added to polymers with secondary glass transitions.
The plasticixer (or comonomer) may increase the modulus in the temper-
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Figure 25 Master gtressrgiaxation curves of bisphenol A polycarbonate of df-
. ferent degrees of Cryddlinity. Degrees of Crydtdlinity are shown by curves. Re-
erence temperature is 155°C. (From Ref. 217.)

ature region between the secondary and main glass transitions; this effect
has been caled the antiplasticizer effect (235-237).

Water is a natural plasticizer for many polar polymers such as the nylons
(23K). polyester resins (239), and cellulosic polymers (240). It strongly shifts
7, in epoxics (241.242). Thus the creep and stress-relaxation behavior of
such polymers can be strongly dependent on the relative humidity or the
atmosphere.

Poly(vinyl chloridg) and its copolymers are probably the most important
polymers that are often used in the plasticized state. Even though enough
plasticizer is used to shift 7T, well below room temperature, the material
does not show excessive creep (and has no contribution of viscous flow to
the compliance) even after long times under load. This behavior is very
similar to that of a cross-linked rubber. However, in this case there are no
chemical cross-links; the material is held together by a small amount of
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Crystallinity—about.i to 15% (213,232). The creep of plasticized poly(vinyl
chloride) polymers as a function of temperature, concentration, and kind
of plasticizer has been studied by many workers, including Aiken et ai.
(232), Neilsen ct ai. (234), and Sabia and Eirich (243). These last workers
aso studied stress relaxation (244). In the case of crystalline polymers,
plasticizers and Copolymerization reduce the melting point and the degree
of Crystallinity. These factors tend to increase the creep and stress relax-
ation, especially at temperatures approaching the melting point.

Block polymers can have complex creep and stress-relaxation behavior
and are not therniorhcologically simple. Although apparent time-
temperature superposition can be found if data are obtained over moderate
time scales, it usualy will not work for data obtained over wide time scales.
For diblocks the complexity depends on the 7, value of the two polymers,
the blockiness of the chain, the compatibility of the two components, and
the morphology of the resulting two-phase system. Thus for di- or triblocks
of the AB or ABA type with well-separated T, values and B the high-T-
value segment, the response will have a two-step appearance with the
modulus dropp| ng a the respectwe T, values (in a plot versus T) or tran-
stion times (in a plot versus log time). As the concentration of B increases,
the morphology changes from glassy polymer B spheres embedded in rub-
ber, to B cylinders, to lamellae, to rubbery A cylinders in a rigid matrix,
to rubbery A spheres-in a glassy matrix. With this progression in mor-
phology, the first step is large when B is small and small when A is large,
and conversely a the second step. As the two 7, values approach each
other or the polymers are more compatible or a diblock AB polymer is
added to enhance miscibility, the steps became less pronounced and a long,
broad transition from glass to the flow region can be produced. Blends of
polymers show similar complex responses. When viewed on the time scale,
however, each blend component can influence the other's &, value and
apparent M, value, so that the transitions and plateau heights tend to shift
in a rather regular fashion as the composition changes. The description of
these shifts is complex (1,159,161.162).

Xll. EFFECT OF ORIENTATION

Orientation effects are strongly coupled to nonlinear behavior, discussed
in Section V, and the stress-strain response discussed in Chapter 5, Ori-
entation makes an initialy isotropic polymer anisotropic so that five or
nine modulus/compliance values arc required to describe the linear re-
gponse instead of two, asdiscussed in Chapter 2. For an initialy anisotropic
polymer the various modulus/compliance components can be altered by
the orientation. It may not be necessary to know al components for an
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engineering application (e.g., the through-the-thickness modulus may be
unimportant for a film or plafe application). Ward has reviewed the the-
oretical and experimental aspects of orientation effects, especially in crys-
talline polymers (245).

Creep and stress relaxation are generally much less in the direction
parallel to the uniaxial orientation than they are perpendicular to the ori-
entation for rigid polymers (245 -253). At least part of this decreased creep
must be due to the increased modulus in the direction parallel to the
oriented chains. ‘'or example, many highly oriented fibers have Young's
moduli about an order of magnitude greater than that of unoriented poly-
mers. The increase in modulus parallel to the direction of orientation arises
because the applied stress largely acts on strong covalent bonds. Perpen-
dicular to the orientation, the force is applied mostly to van der Waals
forces between molecules. Uniaxially oriented polyethylene made by cold-
drawing has a lower creep compliance (higher modulus) parallel to the
stretching direction than in the transvere direction (3,245). However, at
45° to the stretching direction, the modulus as determined by a creep test
is even less than the modulus of unoriented polyethylene.

Analogous results have been found for stress relaxation. In fibers, ori-
entation increases the stress relaxation modulus compared to the un-
oriented polymer (69,247,248,250). Orientation also appears in some cases
to decrease the rate, as well as the absolute value, at which the stress
relaxes, especially at long times. However, in other cases, the stress relaxes
more rapidly in the direction parallel to the chain orientation despite the
increase in modulus (247.248,250). It appears that orientation can in some
cases increase the ease with which one chain can slip by another. This
could result from elimination of some chain entanglements or from more
than normal free volume due to the quench-cooling of oriented polymers.

Biaxially oriented films, made by stretching in two mutually perpendic-
ular directions, have reduced creep and stress relaxation compared to uno-
riented materials. Part ot the effect is due to the increased modulus, but
for brittle polymers, the improved behavior can be due to reduced crazing.
Biaxial orientation generally makes crazing much more difficult in all di-
rections parallel to the plane of the film.

Another effect of orientation shows up as changes in Poisson's ratio,
which can be determined as a function of time by comblnlng the results of
tension and torsion creep tests. Poisson's ratio of rigid unoriented polymers
remains nearly constant or slowly increases with time. Orientation can
drastically change Poisson's ratio (254). Such anisotropic materials actually
have more than one Poisson's ratio. The Poisson's ratio as determined
when a load is applied parallel to the orientation direction is expected to
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be greater than that of the unoriented polymer, but this is not always the
case, especialy for crystaline polymers such as polyethylene (248).

Although nearly dl creep and stress-relaxation tests are made in uniaxial
tension, it is possible to make biaxia tests in which two stresses are applied
a 90° to one another, as discussed in Section VI. In a uniaxid test there is
a contraction in the transverse direction, but in a biaxid test the transverse
contraction is reduced or even prevented. As a result, biaxia creep is less
than uniaxial creep--in cquihiaxid loading it is roughly hdl as much for
equivaent loading conditions. In the linear region the biaxid strain €, in each
direction is (255.256)

iry,

AU

€ m,
5+ (61)
where €, is (he uniaxia strain that would result from a stress oy, €; is the
biaxia strain in each of the mutually perpendicular directions produced by
the same stress r, in each direction, v is Poisson's ratio, and K is the bulk
modulus. For most polymers, Poisson's ratio is between 0.35 and 0.50, so
biaxid creep is generally between 50 and 65% as great as uniaxial creep.
Conversely, the stress-relaxation modulus is higher.

AV BLOCK POLYMERS AND POLYBLENDS

The mechanical propérties of two-phase polymeric systems, such as block
and graft polymers and polyblends, are discussed in detail in Chapter 7.
However, the creep and stress-relaxation behavior of these materials will
be examined at this point. Most of the systems of practical interest consist
of a combination of a rubbery phase and a rigid phase. In many cases the
rigid phase is polystyrene since such materials are tough, yet low in price.

Even in cases where the rigid polymer forms the continuous phase, the
dagic modulus is less than that of the pure matrix material. Thus two-
phase systems have a greater creep compliance than does the pure rigid
phase. Many of these materials craze badly near their yield points. When
crazing occurs, the creep rate becomes much greater, and stress relaxes
rapidly if the deformation is held constant.

One type of block polymer is known as thermoplastic elastomers. They
conds of a number of rubber blocks tied together by hard crystalline or
dassyy blocks. These materials can be processed in injection molding and
extruson equipment since the crystalline blocks melt or the glassy ones
often at high temperatures. However, at lower temperatures, such as at
room temperature, the hard blocks behave very much as cross-links to
reduce creep and stress relaxation. Thermoplastic elastomers have creep
behavior between that of very lightly cross-linked rubbers and highly cross-
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linked rubbers (114,257). "These block polymers have mechanical properties
that can be changed quite dramatically by molding conditions, thermal
history, and annealing. Annealing can reduce the creep very much, es
pecidly if the specimen was quenched during its preparation.

Several attempts have been made to superimpose creep and stress-
relaxation data obtained at different temperatures on styrcne-butadiene-
styrene block polymers. Shen anJ Kaelble (258) found that Williams-
Landel-Ferry (WLF) (27) shift factors held around each of the glass tran-
sition temperatures of the polystyrene and the polybutadiene, but at in-
termediate temperatures a different type of hift factor had to be used to
make a master curve. However, on very similar block polymers, Lim et
ai. (25%)) found that a WLF shift factor held only below 15°C in the region
between the glass transitions, and at higher temperatures an Arrhenius
type of ghift factor held. “The reason for this difference in the shift factors
is not known. Master curves have been made from creep and stress-relax-
ation data on partially miscible graft polymers of poly(ethyl acrylate) and
poly(mcthyl methacrylate)' (260). WLF 4hift factors held approximately,
but the master curves covered 20 to 25 decades of time rather than the 10
to 15 decades for normal one-phase polymers.

The properties of two-phase systems can be changed dramatically by
casting the materials from different solvents. The effects are due to changes
in morphology and phase inversion which switch one polymer from the
continuous to the dispersed phase. Good solvents for a polymer tend to
make that polymer the continuous phase, while poor solvents coil the
polymer chains up tightly and tend to force the polymer into being a
dispersed phase. Examples of the change in stress relaxation of styrene-
rubber block polymers as a result of casting films from different kinds of
solvents have been reported by Beecher et ai. (261) and by Wilkes and
Stein (262).

SUMMARY

‘Time is the major (actor in determining the mechanical properties of a
polymer. This is seen directly in creep and stress-relaxation experiments.
These tests cover Io'ng periods of time, so that they are sensitive to the
types of molecular motions that require long times. Tfrey give little direct
information on the typés of molecular motion that take place at short times.
However, by using the time-temperature superposition principle and the
WLF equations, access to these short times can be achieved even though
they may not easily be attainable by direct experimentation.

Above Tk the time-dependent mechanical properties of a polymer are
determined fundamentally by the distribution of relaxation or retardation
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times, which in turn are determined hy numerous structural and molecular
factors as wdl as by environmental factors. The most important structural
factors are the monomeric friction factor and the molecular weight between
entanglements. The former locales ihe distribution and hence the response
curve on the time scale at a given reference temperature such as 7T, or
some fixed number of degrees above T,. The molecular weight between
entanglements controls the magnitude and breadth of the entanglement
plateau in creep or stress relaxation and the strain recovery in creep re-
covery. The distribution functions and the time-dependent property curves
or functions are qualitatively similar in shape/form for different polymers,
but significant differences exist between polymers.

Temperature affects the response because the spectra and the properties
arc shifted bodily along the logarithmic time scale (i.e., with no change in
shape). This happens because the monomeric friction factor is changed.
The temperature dependence of the friction factor and hence the shift
factor @y is given by the WLF equation. The temperature dependence of
ar is very nearly the same for different pure polymers. The various struc-
tura and environmental factors that can affect the ghift factor do so pri-
marily through their influence on the free volume and thus on 7. Because
of the strong temperature dependence of ¢y near 7. the response curves
shift dramatically in this temperature region. As a result, the modulus or
compliance can change by a factor of 10* over a relatively short temperature
range.

At temperatures below 7. the free volume is a major factor in deter-
mining the creep and stress-relaxation behavior. Molecular motions cannot
occur unless enough space is available, so that fewer types of molecular
motions can occur as the free volume decreases. Free volume can be re-
duced by lowering the temperature, increasing the pressure, or annealing
at a temperature near T,- All of these factors tend to reduce the rate of
creep or stress relaxation. The free volume, and hence the rates, can be
increased by adding solvent or plasticizer. In glassy polymers below Ty the
free volume may be so low that very little creep or stress relaxation due
to molecular motion is possible. In such materials much of the stress re-
laxation and creep can redly be due to crazing phenomena.

Molecular weight of the polymer is the most easily varied and important
structural variable for amorphous polymers at temperatures above T, be-
cause the mdt viscosity (i.e., friction factor or longest relaxation time) is
strongly dependent on molecular weight. Above a critical value of molec-
ular weight, materials contain entanglements, which not only increase the
viscodty but also introduce rubberlike elasticity to the melts. These en-
tanglements impose restrictions on the motion of long-chain segments, so
that additional long-time relaxation and retardation times are given to the
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polymer. Entanglements eventually relax, but chemical cross-links impose
restrictions on chain motions of a much more permanent nature. Thus
there is little, it any, long-term creep or stress relaxation for well cross-
linked rubbers.

Crystallization ties polymer chains together and immobilizes parts of
the chains in the crystallites. The restrictions to motion resulting from
crystallization are very similar to those due to cross-linking as far as re-
ducing creep and stress relaxation are concerned at temperatures between
T, and the melting point. There is an additional effect in that the crystallites.
act as any other hard filler and raise the modulus. The mechanical prop-
erties thus depend on the degree of Crydalinity and the crystallite mor-
phology; therefore, thermal history and annealing can have unusualy large
effects on the behavior of crystalline polymers.

Block polymers and similar two-phase systems are somewhat analogous
to crystaline materials at temperatures between the lower T, value and
the T, or melting point of the other phase. The glassy (or crystalline) phase
both imposes restrictions on the long-range motions of the polymer chains
with the lower T, and raises the overall modulus. Thus the creep or stress
relaxation of two-phase systems is quite small unless the temperature is
above the softening temp”’;ature of the higher softening component.

PROBLEMS '

L. A crecp test is made on a polyethylene specimen that has a length
of 4 in., a width of 0.50 in., and a thickness of (.125 in. A load
of 62.5 tb is applied to the specimen, and its length as a function
of time is given by

Time (min) Length (in.)
0. 4.033
i 4.049
10 4.076
11X} 4.110
1000 4.139
10,000 4.185

Plot the creep compliance (cm?/dyn) as a function of Ume using 8
togarithmic time scale. Would the curve show the upward curvature
on a lincar time scale?

2. Assuming thut the Boltzmann superposition principle holds for the
polymer in Problem 1, what would the creep elongation be from
10 1o 10,000 min if the load were doubled aler 10 min?
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6,

10.

12,

Assuming that the Boltzmann superposition principte holds and
that all of the creep is recoverable, what would the creep recovery
curve be {or the polymer in Problem 1 if the load were removed
after HLOO0 min™?

Derive cquation (6) for the clongation & of a four-¢lement model,
A material has two relisiation times-—10 and [OG s, Mot its relax-
ation curve tfrom | ta K s,

The creep of a polymer obeys the lollowing equation: e{r) = K¢

sinh{a/o ) with # ~ (LHL K = 10 ° and o, = L0} psi, Plot the
creep curve for loads o of 500, 1000, and 2000 psi from 1 o 10*
5. Why is it undesirable to apply loads greater than HX0 psi to this
polymer for long periods of time?

A material has o viscosity of 10* P at 0°C. If it obeys the WLF
cquation, what is its viscosity at 25°C? Assume that the viscosity
is 10" P at T,

A polymer degrades during processing from a weight-average mo-
lecular weight of 1 million to 8 x 10°. What is the ratio of the
melt viscosity after processing to the melt viscosity before pro-
cessing”?

What will radiation during a test do to the stress relaxauon of an
elastomeric material if the radiation brings about chain scission?
Compare a cross-linked polymer with a high-molecular-weight un-
cross-linked one,

A horizontal cantilever bedm is made of an jdealized material that
has only two retardation times: 10 and 1000 s. The beam is bent
downward tor 100 s. Then it is bent upward for 1 s and released
without any vibrations taking place. Describe the motion of the
beam for the next 10,000 s.

A polymer above its T, vaiue shows only a very slow creep rate.
How would you distinguish between cross-linking and crystallinity
as the cause of the small creep rate? Suggest at least two types of
mechanical experiments or combinations of mechanical and other
kinds of tests.

Use Figures 14 and 16 to construct the master curve for stress
relaxation of the polymer at a reference temperature T, of 204°C,
In cross-linked rubbers in which there is a chemical reaction that
involves breaking of network chains, the rate of reaction in many
cases is given by

dN

-—— = —KN
dr
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where N is the number of network chains carrying stress at any
time . Show that the stress relaxation is

il exp (— K1)

Ty

The distribution of relaxation times H({ln ) is a constant over
several decades of time. What is the shape of the stress-relaxation
curve over this time interval?

The 7, value of poly(methyl methacrylate) is 105°C. How much
faster s its rate of stress relaxation at 155°C than at 125°C?

(a) The accompanying table (from Ref. 263) gives E(1) for poly-
isobutylene a1 25°C over a wide range in ¢. (The original data form
a continuous curve over Lhe indicated tme scale,) Use equation
{13} to determing a first approximation (o £,

log ¢ (k) log E{1) log  {h) log E{f} log 1 (h) log E{?)
-12 t0.20 -6 7.1} -1 6.62
=10 912 -5 6.91 0 6.40

-Q K464 -4 6.99 1 5.86
-7 7.30 ~-3 .84 2 5.8

(b) Using the data from ¢ = 10-*10 10" * as Prony series parameters
for a hypothetical polymer, calculate E(r) at ¢ = 1. Are the original
data reproduced? Are the Prony series E; coefficients simply the
values of E(ryatt = 7

(c) Is the resulting curve smooth, or does it oscillate slightly? Re-
calculate with log t spaced every 0.1 log unit. What happens to the
oscillations? Repeat these calculations using only every other 1,
E, data pair. What is the effect on the oscillation if the 1, values
are far apart?

(d) Extend the data at long and short times such that E(¢) drops
more or less rapidly but smoothly {c.g.. sketch an extension to the
curve or curve fit the last few points with a power series and thea
choose coefficients that fit the real data well but cause the extrap-
ofated curve (o tail off in varying ways). Determine the slopes and
recalculate H using -equation (13). Do drastic changes in the ex-
trapolated regions affect the calculated values of H near the ends
of the experimentally observed time scale (i.e.. at log 7 = 10?
and 10°* or 10~ and 10-4)?
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